

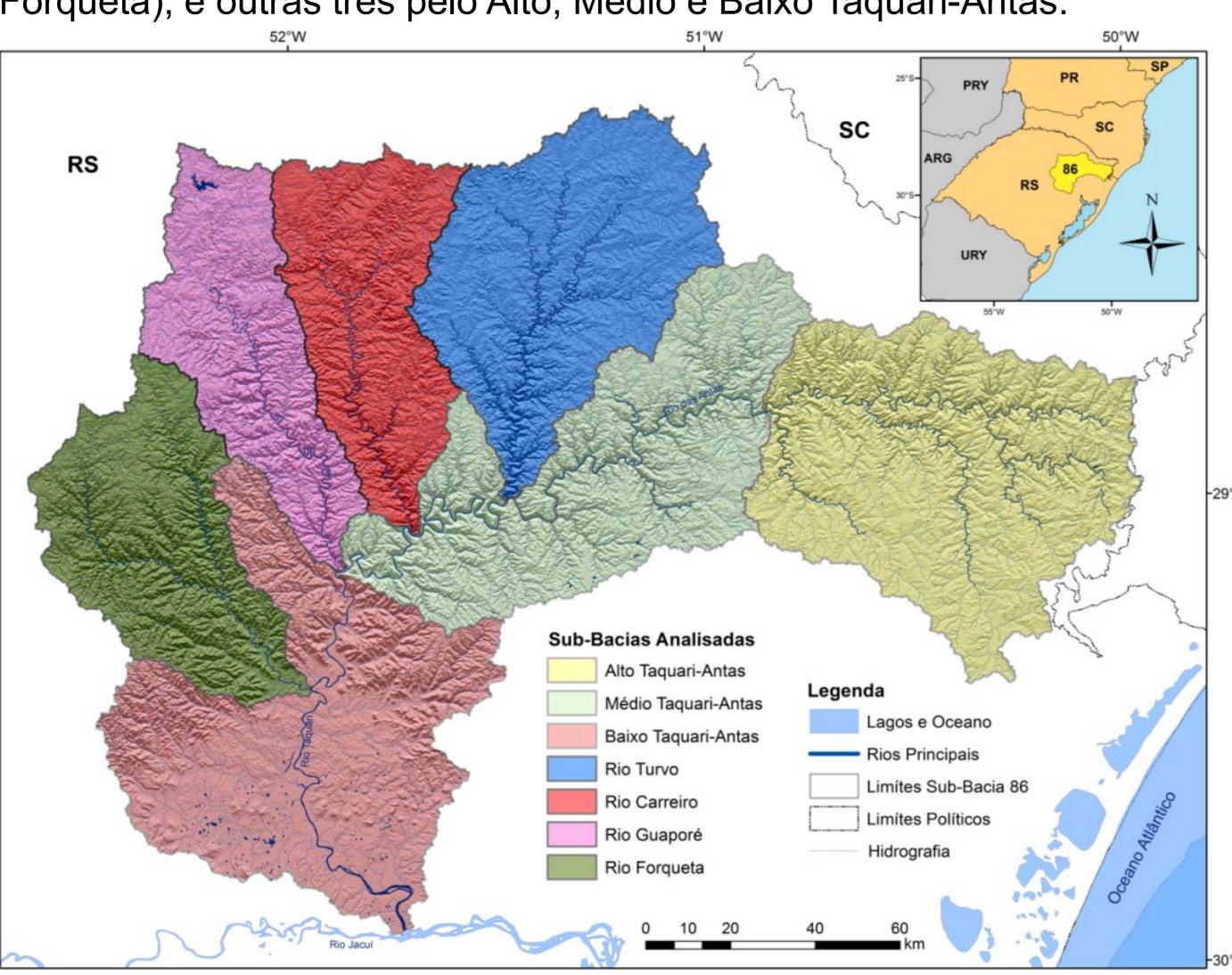
MODELOS DIGITAIS DE ELEVAÇÃO NA DELIMITAÇÃO AUTOMÁTICA DAS SUB-BACIAS DO RIO TAQUARI-ANTAS NO RIO GRANDE DO SUL

Maurício D. Melati^{1,2} & Francisco F. N. Marcuzzo¹

¹CPRM/SGB – Companhia de Pesquisa de Recursos Minerais / Serviço Geológico do Brasil - Porto Alegre/RS

²IPH/UFRGS – Instituto de Pesquisas Hidráulicas / Universidade Federal do Rio Grande do Sul

Introdução


É de grande importância para hidrólogos e demais profissionais que trabalham com a coordenação dos recursos hídricos de uma determinada região o conhecimento seguro e preciso da sua unidade de gestão, ou seja, a bacia hidrográfica. O que ressalta a grande importância do conhecimento detalhado de Modelos Digitais de Elevação (MDE) e do correto manuseio de ferramentas de Sistemas de Informação Geográfica (SIG) na delimitação de bacias hidrográficas.

Objetivo

O objetivo do presente trabalho é estudar e discutir as propriedades qualitativas e a precisão da delimitação automática de bacias hidrográficas empregando os MDE ASTER-GDEM (30m), TOPODATA (30m) SRTM (90m), em comparação com um MDE interpolado com resolução de pixel de 90m a partir de cartas topográficas na escala 1:50.000, na bacia hidrográfica do rio Taquari-Antas.

Material e Métodos

Como a sub-bacia possui diversas sub-bacias de pequeno porte que drenam para os Rios Taquari e Antas, para este estudo as sub-bacias foram divididas em sete unidades de gestão (Figura 1), sendo quatro representadas pelos principais rios afluentes (Turvo, Carreiro, Guaporé e Forqueta), e outras três pelo Alto, Médio e Baixo Taquari-Antas.

Figura 1. Localização, hidrografia com os principais cursos d'água da sub-bacia 86 e sub-bacias utilizadas no estudo.

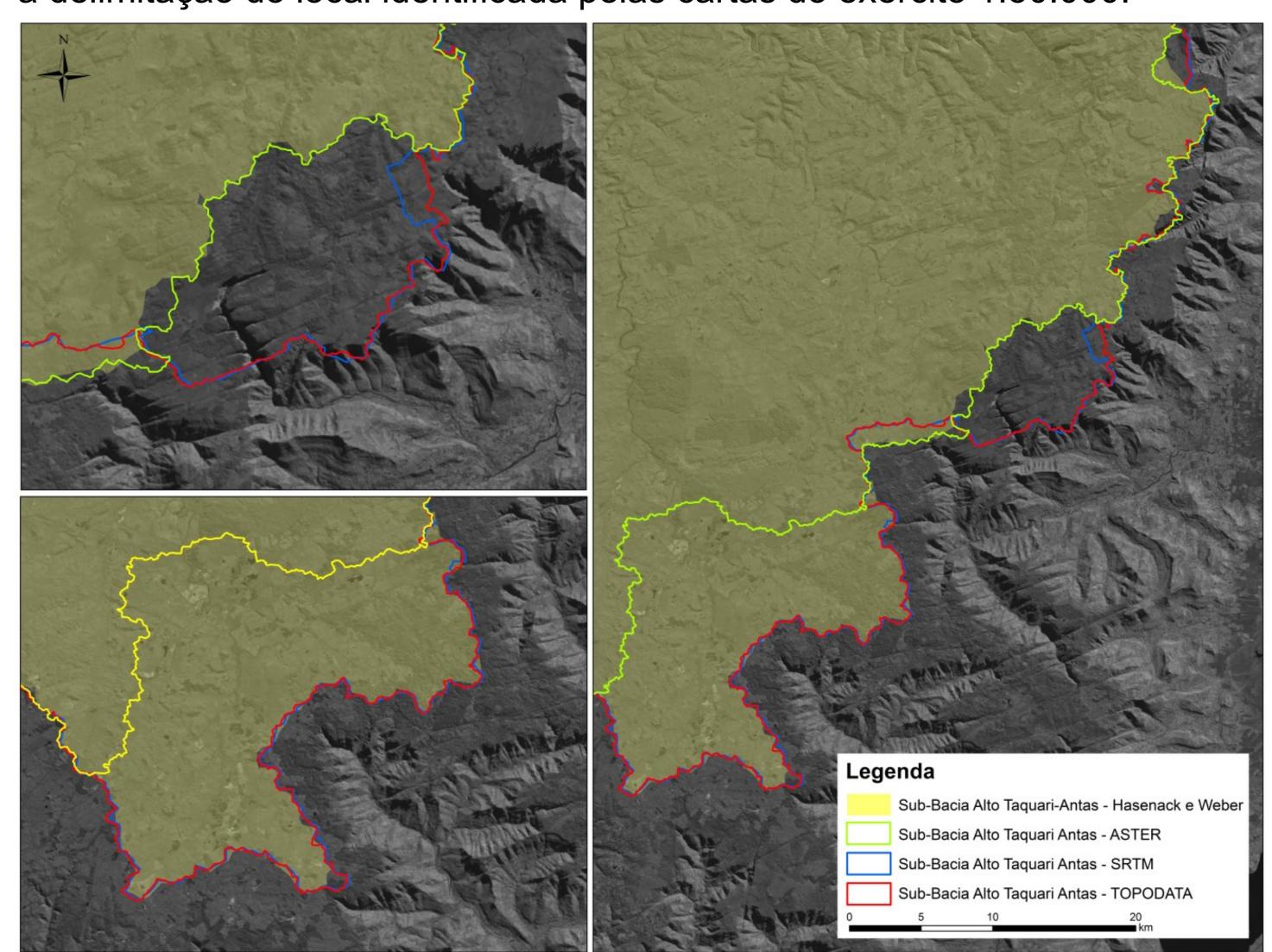
Para a geração das linhas de drenagem e delimitação das sub-bacias foram utilizados três diferentes modelos digitais de elevação (SRTM, ASTER GDEM e TOPODATA), que foram analisados e comparados com a base cartográfica vetorial contínua do estado do Rio Grande do Sul, proveniente de cartas topográficas na escala 1:50.000 da Diretoria de Serviço Geográfico (DSG) do Exército Brasileiro, tais cartas foram digitalizadas ao longo das últimas décadas de forma não uniforme, e apenas em 2009 foram digitalizadas na sua totalidade.

Com o intuito de possibilitar a análise comparativa com os modelos digitais de elevação, as curvas de nível vetorizadas por Hasenack e Weber foram interpoladas para o formato *RASTER*, com resolução de pixel de 90 metros.

Para geração das linhas de drenagem e delimitação das sub-bacias de forma automática foi utilizado o programa ArcGIS 10.1, além disso, em locais onde os resultados apresentaram grandes divergências, as operações hidrológicas foram refeitas com o programa IDRISI Selva.

Resultados

Os resultados de área e perímetro obtidos nas sub-bacias estudadas, para os modelos digitais de elevação utilizados neste estudo, são apresentados na Tabela 1.


Tabela 1. Valores de área e perímetro para as sub-bacias analisadas.

Sub-Bacias	Hasenack e Weber	SRTM	TOPODATA	ASTER	Hasenack e Weber	SRTM	TOPODATA	ASTER
		Área	(km²)		Perímetro (km)			
Rio Turvo	3783,01	3777,03	3776,21	3779,04	347,15	356,26	384,21	410,34
Rio Carreiro	2566,19	2564,76	2563,54	2564,54	307,38	313,61	334,79	356,71
Rio Guaporé	2489,03	2489,68	2488,39	2490,17	316,37	327,50	349,06	370,05
Rio Forqueta	2848,12	2845,75	2846,29	2847,00	310,57	317,08	338,63	361,63
Baixo Taquari-Antas	5067,56	5092,70	5096,74	5081,40	499,68	516,89	566,26	580,91
Médio Taquari-Antas	4476,81	4479,49	4479,13	4475,46	475,70	487,55	528,94	562,22
Alto Taquari-Antas	5142,14	5209,21	5215,43	4905,84	405,22	432,07	472,01	464,59
Taquari-Antas	26372,76	26458,52	26465,75	26143,51	1136,10	1184,38	1286,52	1323,38

Considerando Hasenack e Weber como 100%, os valores de área apresentaram grandes diferenças nas regiões localizadas nas cabeceiras da sub-bacia 86, as sub-bacias do Alto Taquari-Antas apresentaram os resultados mais disformes, o MDE ASTER apresentou uma redução de 4,6%, e os MDE TOPODATA e SRTM apresentaram um aumento de 1,4% (Figura 2), tal imprecisão é ocasionada pelo relevo plano da região que limita a sub-bacia a leste, formado pelos campos de cima da serra.

Para as sub-bacias do Rio Turvo, Rio Carreiro, Rio Guaporé e Rio Forqueta, os valores de área obtidos apresentaram uma grande similaridade, o que se deve ao fato de as regiões apresentarem relevo bastante acentuado, o que facilita a interpretação das direções de escoamento pelo algoritmo utilizado, a maior diferença verificada foi de 0,18% para a sub-bacia do Rio Turvo utilizando o MDE TOPODATA.

Nas regiões do Médio Taquari-Antas a maior diferença verificada foi uma redução de 0,06% utilizando o MDE SRTM. Enquanto que para a região do Baixo Taquari-Antas a maior diferença constatada foi uma redução de 0,58% de área para o MDE TOPODATA, o que pode ser explicado pelo fato de que a sub-bacia em suas partes mais baixas apresenta um relevo bastante plano. Para a área estudada, pôde-se verificar que as diferenças obtidas são decorrentes das diferenças constatadas no Alto Taquari-Antas. A Figura 2 apresenta a delimitação da sub-bacia 86 no Alto Taquari-Antas para os diferentes modelos digitais de elevação utilizados, comparados com a delimitação do local identificada pelas cartas do exercito 1:50.000.

Figura 2. Delimitação da sub-bacia 86 na região do Alto Taquari-Antas a partir de Hasenack e Weber em comparação com os limites obtidos a partir de diferentes modelos digitais de elevação gerados a partir de sensores remotos.

A Tabela 2 apresenta os valores de área obtidos para os diferentes modelos digitais de elevação utilizando o IDRISI.

Tabela 2. Valores de área para a região do Alto Taquari-Antas analisada utilizando o IDRISI.

		Hasenack e Weber	IDRISI	ARCGIS	IDRISI	ARCGIS	IDRISI	ARCGIS
Sub-Bacias	Sub-Bacias		SRTM		TOPODATA		ASTER	
			Área (km²)					
	Alto Taguari-Antas	5142 14	5213 27	5209 21	5216.40	5215 43	4905 53	4905 84

Através dos novos valores obtidos para as áreas estudadas (Tabela 2), pôde-se verificar que não houve alteração considerável em relação aos resultados obtidos anteriormente. Considerando Hasenack e Weber como 100%, notou-se que a maior diferença foi obtida com o programa IDRISI com o MDE ASTER para a sub-bacia do Alto Taquari-Antas (4,6% de diferença), sendo possivelmente ocasionada pela interpretação errada da drenagem na nascente do rio Taquari-Antas. Já a menor diferença foi obtida com o programa ARCGIS com o MDE SRTM para a sub-bacia do Alto Taquari-Antas (1,3% de diferença).

Considerações Finais

Em síntese, verificou-se que os modelos digitais de elevação obtidos por sensores remotos apresentaram resultados bastante precisos para a delimitação das sub-bacias em regiões com declive acentuado, porém apresentaram limitações para a geração da drenagem nas regiões planas da sub-bacia Taquari-Antas. Nesse caso, a utilização de modelos digitais de elevação interpolados provenientes de curvas de nível é uma boa alternativa para contornar o problema apresentado, possibilitando a melhor delimitação da sub-bacia hidrográfica.

