26º Encontro Técnico AESABESP

CURVA-CHAVE TRAÇADA PELO MATLAB COM DIFERENTES TIPOS DE EQUAÇÕES SUPORTADAS PELO PROGRAMA HIDRO

Francisco Fernando Noronha Marcuzzo⁽¹⁾

Pesquisador em Geociências da CPRM / SGB (Companhia de Pesquisa em Recursos Minerais / Serviço Geológico do Brasil), Dr. em Engenharia Hidráulica e Saneamento pela USP (Universidade de São Paulo).

Endereço⁽¹⁾: Rua Banco da Província, 105, CPRM / SGB- Santa Teresa - Porto Alegre/RS - CEP: 90.840-030 - Brasil - Tel: +55 (51) 3406-7324 - e-mail: **francisco.marcuzzo@cprm.gov.br.**

RESUMO

A busca pelo melhor traçado e a calibragem da relação de vazão aferida e a cota do rio observada ou registrada, em postos fluviométricos, são essenciais para a estimativa de vazão (indireta) utilizando a cota do nível do curso d'água. O objetivo deste trabalho foi estudar e discutir a utilização das regressões linear, parabólica, cúbica e potencial disponíveis para inserção de equações de curva-chave no programa HIDRO, da Agência Nacional de Águas (ANA), utilizadas na geração de vazão por meio de cotas, usando o programa MATLAB na concepção destas curvas-chave. A estação FD 76370000 esta localizada no lado ocidental do estado do Rio Grande do Sul, no município de São Gabriel, na bacia do Rio Uruguai (7), mais precisamente na sub-bacia 76, e esta localizada no Rio Cacequi (76123000). Conforme o inventário da ANA, de janeiro de 2015, suas coordenadas geodésicas são -30°06'20''S e -54°38'15''W, com uma altitude de aproximadamente 100 metros e uma área de drenagem de 1.220km². Seguindo o principio que a soma dos quadrados dos erros retrata a curva-chave que menos somou desvios (erros) entre a vazão calculada pela curva-chave e a aferida em campo, observa-se que a melhor curva-chave obtida foi a com regressão cúbica (140,3), seguida das regressões parabólica (172,1), potencial (399,6) e linear (688,7).

PALAVRAS-CHAVE: Relação cota e descarga líquida, equação potencial, equação parabólica.

INTRODUÇÃO

Sabe-se que a relação determinada por equação ou tabela entre cota observada ou registrada em campo e a descarga líquida medida possui essencial importância no processo de conversão de dados de cota em vazão, o que fomenta pesquisadores da área de hidrologia superficial a conservarem constante estudo nas diferentes formas de equacionar essa relação. Melhorar a concepção do traçado da curva-chave entendendo e, se preciso, modificando o equacionamento do seu traçado corrobora para a aproximação dos valores calculados de vazão se aproximem mais dos valores aferidos em campo.

As soluções matemáticas disponíveis para o(a) hidrologista no seu trabalho diário e no desenvolvimento da pesquisa hidrológica são vários. Apesar disso, a utilização de gráficos de dispersão de dados hidrológicos ocupa uma posição de importância dentre as inúmeras ferramentas disponíveis para o hidrologista. Equacionar esta relação cartesiana entre dados hidrológicos e/ou dados físicos e/ou geomorfológicos, que os gráficos de dispersão destas variáveis fornecem é de suma importância para o hidrologista (MARCUZZO, 2014).

Filizola *et al.* (1999) dissertam que diante das perspectivas que se colocam pelos recentes desenvolvimentos de novas tecnologias (maquina e programa), pela entrada de novos fabricantes no mercado e com o aumento do número de usuários, abre-se espaço para um uso operacional maciço do ADCP, como por exemplo na operação de postos de redes hidrométricas com medições de descargas líquida e sólida.

As medições de vazão, segundo Collischonn & Dornelles (2013), são realizadas com o objetivo de determinar a relação entre o nível da água do rio em uma seção e a sua vazão. Esta relação é denominada curva-chave, sendo possível transformar medições diárias de cota, que são relativamente baratas, em medições diárias de vazão.

Blusa e Clark (1999) ressaltam que a utilização de métodos diretos para determinar a vazão numa seção fluvial é uma tarefa demorada e, frequentemente, envolve elevados custos. Por isso, geralmente, procede-se a estimava da descarga de forma indireta mediante o uso da curva-chave.

De Barros *et al.* (2014), em um estudo sobre a diminuição do número de medições de vazão sobre a qualidade de curva-chave, observaram que um fator que tem auxiliado o trabalho de campo é o uso de equipamentos de medições com tecnologia acústica.

Em um trabalho desenvolvido pela Universidade de São Paulo (USP), no campus de São Carlos/SP, Maldonado e Wendland (2013) concluíram que, de modo geral, o medidor eletromagnético apresentou bons resultados, considerando-o de baixo custo, principalmente em locais que apresentam remanso e com velocidades menores a 0.20m.s⁻¹.

Filizola *et al.* (1999) disserta que diante das perspectivas que se colocam pelos recentes desenvolvimentos de novas tecnologias (hardware e software), pela entrada de novos fabricantes no mercado e com o aumento do número de usuários, abre-se espaço para um uso operacional maciço do ADCP, como por exemplo na operação de postos de redes hidrométricas com medições de descargas líquida e sólida.

Jaccon e Cudo (1989) relatam que o estudo da relação cota-descarga, caracterizada por um período de validade e uma faixa de amplitude entre as cotas mínimas e máximas observadas, é realizado a partir de uma série de informações, uma cronologia de cotas e certo número de medições de descarga.

Em um trabalho desenvolvido pelos hidrologista da Usina Hidrelétrica de Itaipu, Gamaro *et al.* (2014) dissertam que os métodos para a determinação da velocidade e da área da seção transversal de fluxo de água em canais abertos, e consequentemente vazão, são normatizados pelo padrão ISO 748:2007 da *International Standard Organization*. Os autores também relatam que o método área-velocidade, utilizado para calcular a vazão em rios, requer que seja realizada uma medição de velocidades em diversas verticais ao longo da largura do rio, e em diferentes profundidades para cada vertical.

Conforme o trabalho publicado por Sefione (2001) a curva-chave é a ferramenta criada para determinação dos valores do nível d'água de um curso d'água. Dificuldades normais, tanto técnicas como operacionais, na medição das vazões para a determinação da curva-chave, muitas vezes impedem que se estenda a curva-chave tanto para as cotas mais baixas como para as cotas mais altas registradas. Essa informação é necessária para se obter mínimas e máximas, como por Sefione *et al.* (2001), que são, não raro, a chave de estudos hidrológicos.

Maldonado (2009) relata que quando a jusante de seção de controle há alguma interferência na vazão, como um sistema de bombeamento, pode-se aplicar o método das isotáquias, que utiliza valores de velocidades e níveis d'água para o cálculo da vazão. O mesmo autor relata que o método das isotáquias não sofre interferências com o represamento e instalações de vertedores.

Kennedy (1984) relata que em rios com baixas declividades, as curvas-chaves podem se tornarem inválidas, devido a não bi univocidade em condições de cheia, situação que para um mesmo nível resultam em diferentes vazões, fenômeno intitulado como histerese.

Maldonado e Gamaro (2013) relatam que para esta situação de histerese, durante a ascensão do nível d'água, a curva-chave indica valores inferiores ao real e durante o descenso do nível d'água, a curva-chave indica valores superiores ao real.

Em seu estudo sobre a avaliação de dados da curva-chave Bartels *et al.* (2010), mostram a importância de se analisar bem a validade de uma curva-chave antes de simplesmente utilizá-la e que pode ser necessário estabelecer mais de uma curva-chave para o intervalo de cotas observado ao longo da série, a fim de melhorar a representação dos dados medidos.

Goes *et al.* (2007) dissertam sobre a possibilidade de variação da curva-chave ao decorrer do tempo, dependendo do tipo de solo existente no leito do rio e principalmente devido a relação da curva com as características hidráulicas e geométricas da morfologia do leito do rio. Com isso observa-se a grande importância da realização contínua das medições de profundidade e vazão ao longo dos anos, mantendo a validade da curva-chave para possível utilização no planejamento hídrico da bacia.

Reitz e Dias (2014) citam que o traçado de curvas-chave em estações instáveis pode ser atividade complexa, especialmente quando os dados de medições de vazão mostram distorções, resultantes de efeitos de remanso.

OBJETIVO

O objetivo deste trabalho foi estudar e discutir a utilização das regressões linear, parabólica, cúbica e potencial, disponíveis para inserção de equações de curva-chave no programa HIDRO, da Agência Nacional de Águas (ANA), utilizadas na geração de vazão por meio de cotas observadas e/ou registradas, empregando o programa MATLAB na concepção destas curvas-chave.

MATERIAL E MÉTODOS

Caracterização geral da região de localização da estação fluviométrica

A estação fluviométrica com medição de descarga líquida (FD) 76370000 esta localizada na bacia do Rio Uruguai (Figura 1), que em sua parte brasileira, é denominada bacia 7 (ANA, 2009). A bacia hidrográfica do Rio Uruguai (número 7) também faz parte da região hidrográfica de número 11, denominada Região Hidrográfica do Uruguai. Os principais rios são: Ibicuí, Ibirapuitã e Jaguari.

Utilizando um Modelo Digital de Elevação SRTM 90, determinou-se que a maior altitude (Figura 1) na subbacia 76 foi de 542m, no território municipal de Tupanciretã, e a menor de 19m, no município de Alegrete, e média de 175,8m. O volume de precipitação pluviométrica média anual nas sub-bacias da bacia do Rio Uruguai (Figura 1) varia de 1.455,4mm.ano⁻¹ na sub-bacia 77 até 1.964,2mm.ano⁻¹ na sub-bacia 73, segundo os dados apresentados por Pinto *et al.* (2011) e interpretados para este estudo. O posto com maior chuva anual média foi o Jaguari (2954007), com 1858,42mm. Já o posto com menor precipitação anual média foi o Dom Pedrito (3054002), com 1407,67mm. Considerando a soma das médias mensais da precipitação de todas as 15 estações pluviométricas na sub-bacia 76, obtém-se uma média de precipitação anual na sub-bacia 76 de 1639,8mm (média de 136,7mm.mês⁻¹).

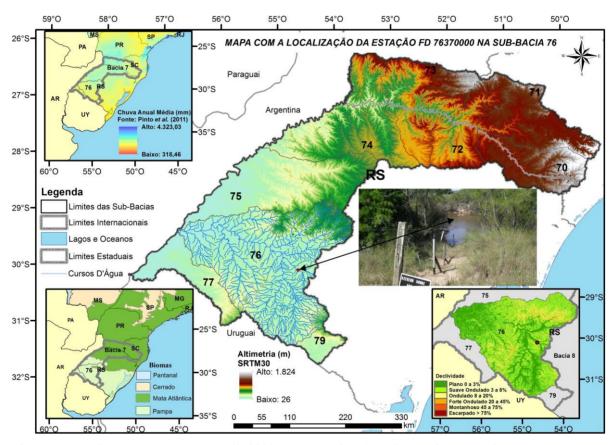


Figura 1. Localização da estação FD 76370000 na sub-bacia 76 (bacia do Rio Uruguai).

Caracterização da estação fluviométrica FD 76370000

A estação fluviométrica FD 76370000 (Azevedo Sodré), com medição de descarga líquida, possui sua localização mostrada na Figura 1. Seus dados inventariais, medições de vazões e cotas observadas foram obtidas do sistema HidroWeb (BRASIL, 2013), em 01/2015. A estação esta localizada no estado do Rio Grande do Sul, no município de São Gabriel, na bacia do Rio Uruguai (7), mais precisamente na sub-bacia 76 (Figura 1), e esta localizada no Rio Cacequi (76123000). Segundo o inventário da ANA, disponível sistema HidroWeb (BRASIL, 2013), em janeiro de 2015, suas coordenadas geodésicas são -30°06'20''S e

54°38'15''W, com uma altitude de aproximadamente 100 metros e uma área de drenagem de 1.220km². Possui registros de cotas e descarga líquida (FD) desde julho de 2004, e qualidade da água (Q) desde janeiro de 2009. O perfil transversal (Figura 2) utilizado data de 28/02/2012, com distância entre o ponto inicial (PI) e ponto final (PF) de 184,5 metros (Figura 3), cota mínima de 77cm e cota máxima de 802cm, como mostrado na Figura 2. Segundo Gamaro *et al.* (2014) modificações do leito de rios implicam em diversos problemas práticos, como: modificações nos perfis de velocidades do escoamento, podendo influenciar nos resultados das medições convencionais de vazão; alterações das relações "cota x área" e das velocidades indexadas. Os mesmos autores relatam que os diferentes resultados obtidos entre os trabalhos estudados também dão um indicativo de que os procedimentos de campo devem ser padronizados.

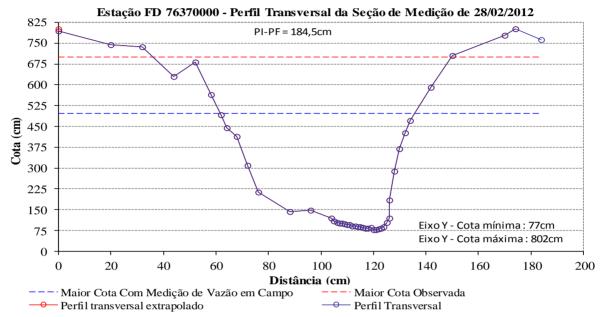


Figura 2 - Perfil transversal e foto da seção de réguas da estação FD 76370000 no Rio Cacequi.

Figura 3. Fotos da seção de réguas linimétricas da estação FD 76370000 (Azevedo Sodré). Fonte: Banco de fotos da Rede Hidrometeorológica da CPRM/SGB de Porto Alegre/RS.

A maior vazão medida na série histórica da estação 76370000 (Figuras 1, 2, 3 e 4) foi em 22/10/2014, com $100\text{m}^3.\text{s}^{-1}$ e uma cota de 498cm (Figura 2). Já a menor vazão medida foi de 0,393m³.s⁻¹ e uma cota de 94cm, em 01/06/2012. A maior cota observada em campo foi de 699cm, em 05/10/2005. A planilha de cálculo dos elementos geométricos esta disponível para baixar clicando na Figura 2, e para baixar as demais Figuras

em alta resolução basta clicar em cima das mesmas que abrirá uma página no navegador para baixá-las. Melati e Marcuzzo (2014) constataram a grande frequência com que falhas de transcrição de dados fluviométricos aparecem, e como em alguns casos podem influenciar as características hidráulicas da seção transversal de um rio, afetando diretamente a concepção de curvas-chave.

Figura 4. Imagem aérea da localização da estação FD 76370000 (Azevedo Sodré). Fonte: Google Earth (2013).

Dados da estação fluviométrica 76370000 utilizados neste estudo

Os dados utilizados (Tabela 1) para geração das equações, da estação fluviométrica 76370000, foram referentes às medições de descarga líquida de 21/07/2004 a 22/10/2014, cuja menor cota e a menor vazão do período foram de, respectivamente, 94cm e 0,393m³.s⁻¹, observadas em 01/06/2012.

Tabela 1. Dados de medição de descarga líquida e suas respectivas cotas da estação FD 76370000.

Data	Vazão (m³.s ⁻¹)	Cota (cm)	Data	Vazão (m³.s ⁻¹)	Cota (cm)	Data	Vazão (m³.s ⁻¹)	Cota (cm)
21/07/2004	4,86	138	09/12/2007	4,66	144	10/09/2011	8,26	157
15/10/2004	9,95	169	20/04/2008	2,87	129	21/11/2011	1,35	117
01/12/2004	1,64	145	20/04/2008	2,96	129	28/02/2012	2,4	120
27/08/2005	71,50	391	27/06/2008	30,9	264	01/06/2012	0,393	94
21/10/2006	6,36	159	18/10/2008	94,1	476	31/08/2012	1,2	107
29/03/2007	18,6	213	17/06/2009	1,09	109	19/11/2012	2,23	136
24/04/2007	6,13	157	26/09/2009	10,8	192	08/05/2013	20,6	230
24/04/2007	6	158	09/12/2009	85,7	458	23/11/2013	64,3	394
25/04/2007	23,8	238	10/05/2010	4,89	141	29/03/2014	12,8	210
26/04/2007	26,8	251	26/08/2010	7,05	164	11/07/2014	54,3	374
27/04/2007	32,3	270	17/11/2010	0,731	103	22/10/2014	100	498
28/04/2007	39,5	306	02/04/2011	4,91	136	-	-	-
25/08/2007	53,4	343	10/06/2011	3,74	125	-	-	-

Destaca-se que estes dados utilizados neste estudo foram dados brutos, ou seja, não foram consistidos quanto à verificação das planilhas brutas oriundas de campo ou quanto a possíveis falhas na série histórica de medições de campo.

Tipos de equações testadas para o traçado da curva-chave

O programa Hidro, disponibilizado no sistema HidroWeb pela Agência Nacional de Águas para o gerenciamento de dados hidrológicos, possuí capacidade de inserção de coeficientes de quatro tipos de equações, a linear (equação 1), parabólica (equação 2), cúbica (equação 3) e a potencial (equação 4). Esses coeficientes são inseridos no programa Hidro visando a estruturação interna da equação gerada segundo as medições de descarga líquida e as suas respectivas cotas, com o objetivo de gerar vazão diária ou horária, segundo as cotas observadas e/ou registradas em campo. Ressalta-se que, no Brasil, o tipo de equação mais utilizada e difundida entre os fluviometristas é a equação potencial.

$$Q = a0 + a1.x \tag{1}$$

$$Q = a0 + a1.x + a2.x^2 (2)$$

$$Q = a0 + a1.x + a2.x^2 + a3.x^3 \tag{3}$$

$$Q = a0.x^{a1} \tag{4}$$

em que, Q é a vazão (m³.s⁻¹); a0, a1, a2, a3 são coeficientes de ajuste das equações; x é a cota na régua linimétrica do rio (cm).

Logaritmizando (equação 5) os termos da equação potencial (equação 4) obtêm-se uma relação direta com a estruturação da equação linear (equação 1). Com isso, tirando o logaritmo neperiano dos dados de cota e vazão, pode-se executar uma regressão linear para se obter os coeficientes da equação potencial (não logaritmizada), como apresentado no trabalho de Marcuzzo (2014).

$$\ln Q = \ln a0 + a1 \ln x \tag{5}$$

Segundo India (1999), existem dois tipos de equações algébricas que são comumente utilizadas na concepção de curvas-chave, que são a equação do tipo potencial (equação 4) e a do tipo parabólica (equação 2), sendo a equação potencial a mais comumente utilizada e recomendada na Índia.

MatLab e a regressão

O programa MATLAB (MATHWORKS, 2013) tem seu nome como uma simples abreviação para "laboratório de matrizes" (*MATrix LABoratory*). No MATLAB programam-se códigos em um ambiente de alto nível que possui ferramentas avançadas para análise de dados e visualização gráfica de simulações, tendo a característica de possuir sua própria linguagem de programação. Um maior detalhamento teórico sobre otimização matemática, regressão e o MATLAB pode ser verificado em Marcuzzo (2008), Marcuzzo e Wendland (2010; 2014) e Ferreira (2012).

RESULTADOS E DISCUSSÃO

As equações traçadas pelo MatLab (MATHWORKS, 2013), para a estação fluviométrica 76370000, referente as medições de 21/07/2004 a 22/10/2014, obtidas com as regressões linear (equação 6), parabólica (equação 7), cúbica (equação 8) e potencial (equação 9) foram as seguintes:

$$Q(m^3.s^{-1}) = -30,65 + 0,2463.[Cota(cm)]$$
(6)

$$Q(m^3.s^{-1}) = -11,09 + 0,06727.[Cota(cm)] + 0,0003209.[Cota(cm)]^2$$
(7)

$$Q(m^3.s^{-1}) = 1,178 - 0,09916.[Cota(cm)] + 0,000975.[Cota(cm)]^2 - 7,605.10^{-7}.[Cota(cm)]^3$$
(8)

$$O(m^3.s^{-1}) = 0.0001614.[Cota(cm)]^{2,156}$$
(9)

As curvas-chave apresentadas nas Figuras a seguir foram traçadas considerando 37 medições de vazão (35 graus de liberdade para a estatística), totalizando 10 anos de dados (Tabela 1) de medição de descarga líquida da estação FD 76370000.

Ressalta-se que, para este estudo, os coeficientes das equações não foram ajustados buscando-se o melhor ajuste para os diferentes tipos de equações, pois o objetivo deste estudo foi testar o traçado simples das equações para verificar qual a que se ajusta melhor "naturalmente", para este estudo de caso, sem otimizar

seus coeficientes, analisando principalmente o somatório dos quadrados dos erros (SSE; *Sum Square Error*). Ou seja, neste estudo também não se dividiu a série histórica ou se procurou otimizar os coeficientes das curvas-chave, não objetivando melhorar o ajuste minimizando a soma dos desvios absolutos ou minimizando o maior desvio. Outros três parâmetros qualitativos observados (Figuras 5, 7, 9 e 11) neste estudo foram à raiz quadrada dos erros médios (RMSE; *Root Mean Square Error*), coeficiente de determinação (r²; *R-Square*) e o coeficiente de determinação ajustado (r² ajustado; *Adjusted R-Square*).

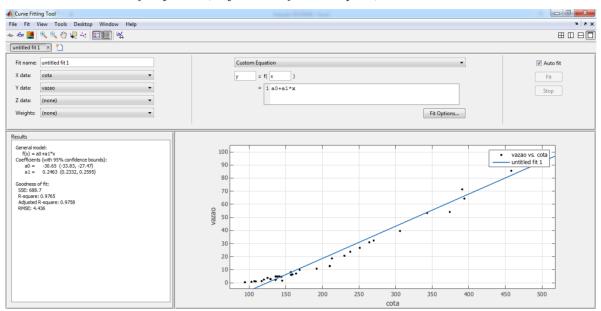


Figura 5. Curva Linear com regressao simples e os respectivos coeficientes da equação e os parametros qualitativos da equação em relação aos dados medidos em campo.

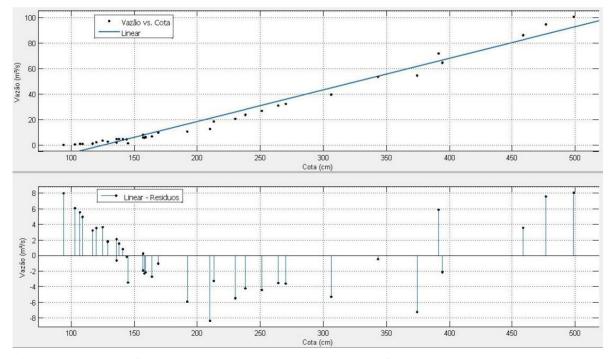


Figura 6. Detalhe da Curva Linear com regressao simples e os resíduos entre os valores medidos em campo e os calculados (reta).

Observa-se nas Figuras 5 e 6 que o ajuste linear da curva foi sofrivel, já que o desenho dos pontos nos gráficos de distribuição não sinalizavam para uma calibragem linear de uma reta. Verificou-se que para a regressão

linear o somatório dos quadrados dos erros (SSE; *Sum Square Error*), de 688,7, foi o mais elevado dentre os tipos de regressões testadas. Já a raiz quadrada dos erros médios (RMSE; *Root Mean Square Error*) foi de 4,436, enquanto o coeficiente de determinação (r²; *R-Square*) foi de 0,9765 e o coeficiente de determinação ajustado (r² ajustado; *Adjusted R-Square*) obteve o valor de 0,9758.

Nas Figuras 7 e 8 verificou-se que o ajuste parabólico da curva foi o segundo melhor, ficando atrás apenas do ajuste por regressão cúbica. Nota-se que, para a regressão parabólica, o somatório dos quadrados dos erros, de 172,1, foi o segundo menor dentre os tipos de regressões testadas. Já a raiz quadrada dos erros médios foi de 2,25, enquanto o coeficiente de determinação foi de 0,9941 e o coeficiente de determinação ajustado obteve o valor de 0,9938.

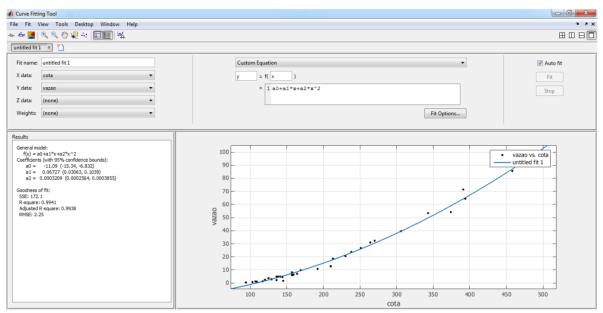


Figura 7. Curva Parabólica com regressao simples e os respectivos coeficientes da equação e os parametros qualitativos da equação em relação aos dados medidos em campo.

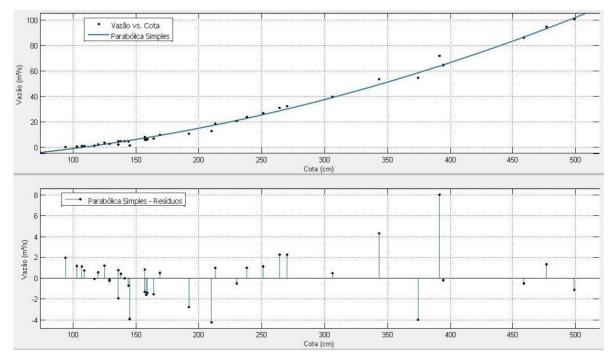


Figura 8. Detalhe da Curva Parabólica com regressao simples e os resíduos entre os valores medidos em campo e os calculados (reta).

Jaccon e Cudo (1989) relatam que o traçado da curva-chave é feita seguindo-se a regra de igual repartição dos pontos, minimizando-se a soma dos desvios relativos entre a descarga medida e a descarga lida na curva, para uma mesma cota. Os mesmos autores relatam que a precisão só depende da quantidade e da repartição.

Nas Figuras 9 e 10 observou-se que o ajuste cúbico da curva foi o melhor dos quatro tipos testados. Nota-se que, para a regressão parabólica, o somatório dos quadrados dos erros, de 140,3, foi o menor dentre os tipos de regressões testadas. Já a raiz quadrada dos erros médios foi de 2,062, enquanto o coeficiente de determinação foi de 0,9952 e o coeficiente de determinação ajustado obteve o valor de 0,9948.

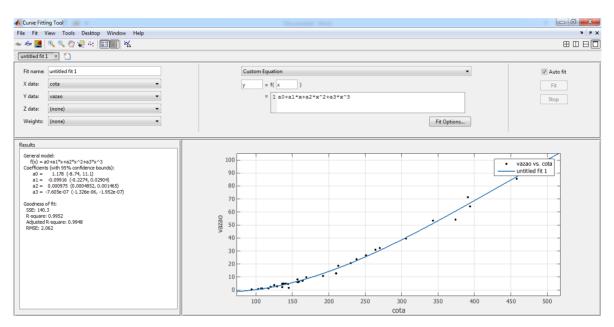


Figura 9. Curva Cúbica com regressao simples e os respectivos coeficientes da equação e os parametros qualitativos da equação em relação aos dados medidos em campo.

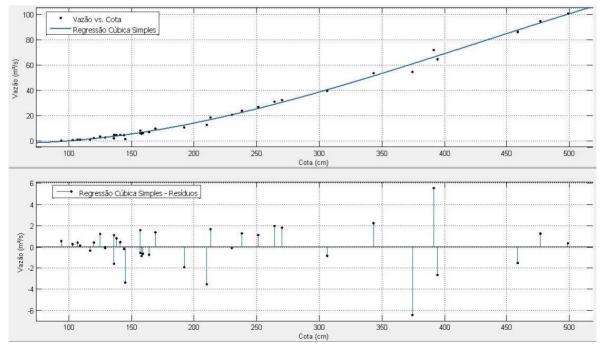


Figura 10. Detalhe da Curva Cúbica com regressao simples e os resíduos entre os valores medidos em campo e os calculados (reta).

Nota-se que nas Figuras 11 e 12 que o ajuste potencial da curva foi a terceira melhor dos quatro tipos testados. Observou-se que, para a regressão potencial, o somatório dos quadrados dos erros foi de 399,6, já a raiz quadrada dos erros médios foi de 3,379, enquanto o coeficiente de determinação foi de 0,9864 e o coeficiente de determinação ajustado foi de 0,986.

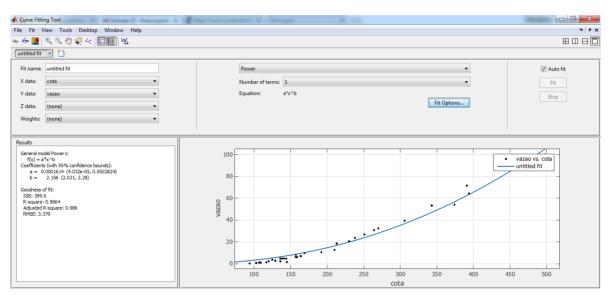


Figura 11. Curva Potencial com regressao simples e os respectivos coeficientes da equação e os parametros qualitativos da equação em relação aos dados medidos em campo.

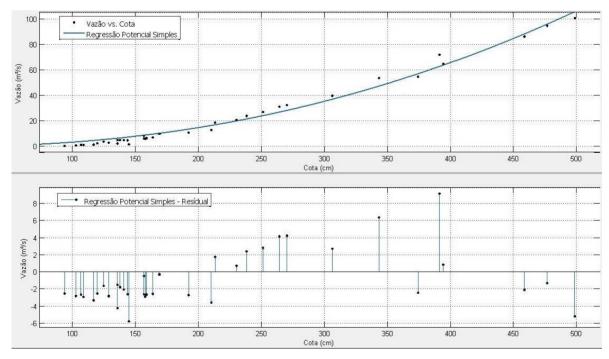


Figura 12. Detalhe da Curva Potencial com regressao simples e os resíduos entre os valores medidos em campo e os calculados (reta).

No estudo apresentado por Maldonado *et al.* (2014) verifica-se que a determinação de eleger a melhor curva comparada a outra existente (ou a uma tabela de calibragem) é baseada nos desvios de vazão estimados pela curva comparada à vazão medida. Logo, seguindo o principio que a soma dos quadrados dos erros retrata a curva-chave que menos somou desvios (erros) entre a vazão calculada pela curva-chave e a aferida em

campo, observa-se das Figuras 5 a 12 que a melhor curva-chave obtida foi a com regressão cúbica (140,3), seguida das regressões parabólica (172,1), potencial (399,6) e linear (688,7).

As Figuras apresentadas neste trabalho, com melhor resolução, e o código do programa MatLab desenvolvido para este trabalho, podem ser baixadas gratuitamente pelos endereços ("*links*") na internet disponibilizados no Quadro 1, ou através da solicitação pelo e-mail do autor deste trabalho.

Quadro 1 - Figuras com melhor resolução e o código do MatLab com este estudo de caso para baixar.

Material	Endereços ("links") para Baixar Utilizando o Navegador de Internet
Figura 1	https://drive.google.com/open?id=0B6T7sNg_aVgOdDB1RGdrNF9XRDA&authuser=0
Figura 2	https://drive.google.com/open?id=0B6T7sNg_aVgOTVhLZEM3OFY1dDQ&authuser=0
Figura 3	https://drive.google.com/open?id=0B6T7sNg_aVgOcVF1b2gtV3ljSjQ&authuser=0
Figura 4	https://drive.google.com/open?id=0B6T7sNg_aVgOeEl2a0ZVSEpxMlk&authuser=0
Figura 5	https://drive.google.com/open?id=0B6T7sNg_aVgOZzI5N1ITVHRxRUE&authuser=0
Figura 6	https://drive.google.com/open?id=0B6T7sNg_aVgOMV9fbnY5VzRWNm8&authuser=0
Figura 7	https://drive.google.com/open?id=0B6T7sNg_aVgOQ0syZEh3NG5GRWc&authuser=0
Figura 8	https://drive.google.com/open?id=0B6T7sNg_aVgOY094U0F5Qjc0UEE&authuser=0
Figura 9	https://drive.google.com/open?id=0B6T7sNg_aVgOOGNTVVM2dFFURWs&authuser=0
Figura 10	https://drive.google.com/open?id=0B6T7sNg_aVgOWW1UU2RRa050Uzg&authuser=0
Figura 11	https://drive.google.com/open?id=0B6T7sNg_aVgOWXBFeGhMQ2xGd2M&authuser=0
Figura 12	https://drive.google.com/open?id=0B6T7sNg_aVgOSXAyV2dNS2lLZXM&authuser=0
Código MatLab Arquivo Zipado	https://drive.google.com/open?id=0B6T7sNg_aVgOU3FLMXplR0ktQ1k&authuser=0

CONCLUSÃO

Conclui-se que, pelo principio que a soma dos quadrados dos erros retrata a curva-chave que menos somou desvios entre a vazão estimada pela curva-chave e a medida em campo, os tipos de regressões que menor soma de erros obtiveram, em ordem crescente de somatório de erros, foram: cúbica ("melhor"), parabólica, potencial e linear ("pior"). Entretanto, ressalta-se que a grande maioria das curvas-chave dos rios brasileiros são concebidas com a regressão potencial, mesmo essa não sendo em alguns casos, como mostrado neste estudo, o melhor tipo de traçado para descrever a relação cota versus descarga líquida de um curso d'água.

Observando-se diferentes possibilidades metodológicas para equacionar a descrição da relação vazão versus cota linimétrica, verifica-se com isso também a necessidade de atrelar a curva-chave aos parâmetros qualitativos do traçado que nortearam o hidrologista que a concebeu, como o somatório dos erros entre a vazão calculada (estimada) e a observada (aferida) em campo, desvio relativo e absoluto, etc.

AGRADECIMENTOS

O autor agradece a CPRM/SGB (Companhia de Pesquisa Recursos Minerais / Serviço Geológico do Brasil - empresa pública de pesquisa do Ministério de Minas e Energia) pelo fomento que viabilizou o desenvolvimento deste trabalho.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. AGÊNCIA NACIONAL DE ÁGUAS ANA. Análise de consistência de dados fluviométricos de estações de monitoramento da ANA localizadas na bacia hidrográfica do Rio Purus (sub-bacia 13). Nota Técnica nº 245/2011/SGH-ANA. 30 de setembro de 2011.
- AGÊNCIA NACIONAL DE ÁGUAS ANA. Inventário das estações fluviométricas. 2. ed. Brasília, 2009. Disponível em: http://arquivos.ana.gov.br/infohidrologicas/InventariodasEstacoesFluviometricas.pdf>. Acesso em 26 ago. 2014.

- 3. AGÊNCIA NACIONAL DE ÁGUAS ANA. **Sistema para Gerenciamento de Dados Hidrológicos**. Versão Hidro 1.2, compilação 1.2.1.286. Brasília: ANA, 2014. Disponível em: http://hidroweb.ana.gov.br/>. Acesso em: 23 jan. 2015.
- 4. BARTELS, G. K.; BESKOW, S.; <u>AQUINO, L. S.</u>; TAVARES, V. E. Q.; <u>TIMM, L. C.</u> Avaliação dos dados de vazão gerados pela curva-chave no Arroio Pelotas (Ponte Cordeiro de Farias). In: XIX Congresso de Iniciação Científica -XII Encontro de Pós-Graduação II Mostra Científica, 2010, Pelotas. <u>Anais...</u> 2010. Disponível em: http://wp.ufpel.edu.br/rhima/files/2010/09/CIC-UFPel-2010_01028.pdf>. Acesso em: 28 Jan. 2015.
- 5. BRUSA, L. C.; CLARKE, R. T. Erros envolvidos na estimativa da vazão máxima utilizando curva-chave. Caso de estudo: Bacia do Rio Ibicuí, RS. **Revista Brasileira de Recursos Hídricos**–RBRH, v. 4, n. 3, p. 91-95, 1999. Disponível em: http://www.abrh.org.br/sgcv3/UserFiles/Sumarios/3a3f301efac8bf6e1d937cd95f656ac3_5e4ad63f71e59 23773ba0e118d71bb54.pdf>. Acesso em: 5 mar. 2015.
- 6. BRASIL. Agência Nacional de Águas. **Hidroweb**. Sistema de informações hidrológicas. 2013. Disponível em: http://hidroweb.ana.gov.br/. Acesso em: 11 ago. 2014.
- 7. COLLISCHONN W.; DORNELLES F. **Hidrologia para engenharias e ciências ambientais**. Vol. 1. Porto Alegre: Ed. Universidade/UFRGS: ABRH. 310p.
- 8. DE BARROS, M. M. F.; DE MELO, C. R.; DE MELO, S. C.; DA COSTA, F. A.; GUEDES, P. A. Análise dos efeitos da redução de medições de descarga líquida sobre a qualidade das curvas-chave no rio tracunhaém: um estudo de caso. In: XII Simpósio de Recursos Hídricos do Nordeste. 2014, Natal. Anais... Porto Alegre: ABRH, 2014. p. 1-10. Disponível em: http://www.abrh.org.br/xiisrhn/anais/papers/PAP018337.pdf>. Acesso em: 23 fev. 2015.
- 9. FERREIRA, P. A. V. **Otimização Não-linear**. 2002. Disponível em http://www.dt.fee.unicamp.br:80/~valente/ia543.html>. Acesso em 12 fev. 2015.
- 10. FILIZOLA, N.; GUIMARÃES, V.; GUYOT, J. L. Medição de vazão em grandes rios com o uso do perfilador Doppleracustico de corrente. In: Manaus' 99 international symposium-Hydrological and Geochemical processes in large scale river basins. Manaus, Brasil. 1999. Disponível em: http://www.jloup.fr/hybam/documents/conferences/1990_1999/1999(11)_Manaus/filizola_2.pdf. Acesso em: 5 mar. 2015.
- 11. GAMARO, P. E.; MALDONADO, L. H.; DE CASTRO, J. L. Aplicação do método das dunas para determinação da descarga de fundo no Rio Paraná. In: XI Encontro Nacional de Engenharia de Sedimentos, 2014, ISSN-2359-2141, João Pessoa. Anais... Porto Alegre: ABRH, 2014. p. 1-14. Disponível em: http://www.abrh.org.br/SGCv3/UserFiles/Sumarios/a62516366d12ad67e2bd2ef1de520499_f179fdbcdf38e11501e5cecdaa16f47a.pdf>. Acesso em: 28 Jan. 2015.
- 12. GAMARO, P. E.; MALDONADO, L. H.; SANTOS, J. M. Comparativo entre medições de vazão com micromolinete e flowtracker para a estação São Francisco Falso. In: XX Simpósio Brasileiro de Recursos Hídricos, 2013, Bento Gonçalves. Anais... Porto Alegre: ABRH, 2014. p. 1-10. Disponível em: https://www.abrh.org.br/sgcv3/UserFiles/Sumarios/579cd3a94951f7f86576318234b74346 3e706bdeb90 ccc5bb34257e08bd60429.pdf>. Acesso em: 28 Jan. 2015.
- 13. GOES, M. U. A.; BERTOLDO, F.; BURIOL, G. A.; RIGHES, A. A.; DA SILVEIRA, G. L. Curva chave Estudo de caso da bacia hidrográfica Escola urbana, Santa Maria RS. I Simpósio de Recursos Hídricos do Norte e Centro-Oeste. 2007, Cuiabá. **Anais...** Porto Alegre: ABRH, 2007. p. 1-13. Disponível em: http://www.abrh.org.br/novo/i simp rec hidric norte centro oeste47.pdf>. Acesso em: 10 mar. 2015.
- 14. GOOGLE. **Google Earth**, 7.1.2.2041. [S.l.: s.n.], Compilação de 10/7/2013. 2013. Disponível em: http://www.google.com.br/intl/pt-BR/earth/> Acesso em: 12 fev. 2015.
- 15. HUBER, P. J. Robust statistical procedures. 2ª edição. Germany: Siam, 1996.
- 16. INDIA. **How to establish stage discharge rating curve**. Training module # SWDP 29. New Delhi: Hydrology Project, 1999. Disponível em: http://www.cwc.gov.in/main/HP/download/29%20HOW%20TO%20ESTABLISH%20STAGE%20DISCHARGE%20RATING%20CURVE.pdf Acesso em: 23 ago. 2011.
- 17. JACCON, G.; CUDO, K. J. Curva-chave: análise e traçado. Brasília: DNAEE, 273p. Disponível em: http://horizon.documentation.ird.fr/exl-doc/pleins textes/divers12-12/30572.pdf>. Acesso em: 28 Jan. 2015
- 18. MALDONADO, L. H. Validação experimental de metodologias para quantificação contínua de vazão no Ribeirão da Onça. 2009. **Dissertação** (Mestrado em Hidráulica e Saneamento) Escola de Engenharia de São Carlos, University of São Paulo, São Carlos, 2009. Disponível em: http://www.teses.usp.br/teses/disponiveis/18/18138/tde-27042010-154503/. Acesso em: 2015-03-05.

- 19. MALDONADO, L. H.; GAMARO, P. Métodos de correção de vazões em tramos superiores de curvaschaves e para o caso de histerese. In: XX Simpósio Brasileiro de Recursos Hídricos, 2013, Bento Gonçalves. Anais... Porto Alegre: ABRH, 2013. p. 1-8. Disponível em: http://www.abrh.org.br/sgcv3/UserFiles/Sumarios/902cf7d4f368a8ba8a2c69d9cd6a377c 963561ef21aca fdb511955fa2654c8b1.pdf>. Acesso em: 5 mar. 2015.
- 20. MALDONADO, L. H.; GAMARO, P. E.; SANTOS, J. M.; SANTOS, F. A. M. Alteração de curva-chave devido a assoreamento: caso da Estação de Flórida, MS. In: XI ENES, 2014, **Anais**... João Pessoa. XI ENES, 2014. Disponível em: https://www.abrh.org.br/sgcv3/UserFiles/Sumarios/5017322205a6ee548ab306876bfd35fb_fc8e1745328 977f048ed9ebab8685ee6.pdf>. Acesso em: 28 Jan. 2015.
- 21. MALDONADO, L. H.; WENDLAND, E. Aplicação de medidores de vazão não-convencionais em rios: eletromagnético e vertedor circular móvel. In: XX Simpósio Brasileiro de Recursos Hídricos, 2013, Bento Gonçalves. Anais... Porto Alegre: ABRH, 2013. p. 1-8. Disponível em: https://www.abrh.org.br/sgcv3/UserFiles/Sumarios/e62af33544f06382bbefac354d6cc03f 26c78165c859 500fad1245dab3f44617.pdf>. Acesso em: 28 Jan. 2015.
- 22. MARCUZZO, F. F. N. Modelagem Hidrológica Utilizando Regressão: Conceituação Matemática, Logaritmização e Avaliação. In: XII Simpósio de Recursos Hídricos do Nordeste, 2014, Natal. Anais... Porto Alegre: ABRH, 2014. p. 1-10. Disponível em: http://www.abrh.org.br/xiisrhn/anais/papers/PAP018282.pdf>. Acesso em: 28 Jan. 2015.
- 23. MARCUZZO, F. F. N. Sistema de otimização hidráulica e econômica de rede de irrigação localizada usando algoritmos genéticos. **Tese de doutorado**. EESC/USP, São Carlos, 361 p. 2008. Disponível em: http://www.teses.usp.br/teses/disponiveis/18/18138/tde-11112008-091041/pt-br.php>. Acesso em 12 fev. 2015.
- 24. MARCUZZO, F. F. N.; WENDLAND, E. Efeito da variação na tarifação pelo uso da água no dimensionamento otimizado de rede de irrigação localizada usando algoritmos genéticos. **Revista Brasileira de Recursos Hídricos**, 15, 109-118. 2010. Disponível em: https://www.abrh.org.br/sgcv3/UserFiles/Sumarios/0965dabc71f46b05537f68871d5ed280_de994387275c4b2e6327350b0de23f65.pdf>. Acesso em 12 fev. 2015.
- 25. MARCUZZO, F. F. N.; WENDLAND, E. The Optimization of irrigation networks using genetic algorithms. **Journal of Water Resource and Protection**, 2014, 6, 1124-1138. Disponível em: http://dx.doi.org/10.4236/jwarp.2014.612105>. Acesso em 12 fev. 2015.
- 26. MATHWORKS. Matlab for Windows, version 8.2 R2013a: tutorial of optimization toolbox. [S. 1.]: The MathWorks Inc., 2013. Conjunto de programas. 1 CD-ROM. Disponível em: http://www.mathworks.com/products/?s_tid=gn_ps. Acesso em 23 fev. 2015.
- 27. MELATI, M. D. MARCUZZO, F. F. N. Estudo de Perfis de Estações Fluviométricas: Transcrições de Campo, Ajuste de Escritório e Efeito nos Atributos Hidráulicos. In: XII Simpósio de Recursos Hídricos do Nordeste, 2014, Natal. **Anais...** Porto Alegre: ABRH, 2014. p. 1-10. Disponível em: http://www.abrh.org.br/xiisrhn/anais/papers/PAP018475.pdf>. Acesso em: 28 Jan. 2015.
- 28. PINTO, E. J. de A.; AZAMBUJA, A. M. S. de; FARIAS, J. A. M.; SALGUEIRO, J. P.de B.; PICKBRENNER, K. (Coords.). Atlas pluviométrico do Brasil: isoietas mensais, isoietas trimestrais, isoietas anuais, meses mais secos, meses mais chuvosos, trimestres mais secos, trimestres mais chuvosos. Brasília: CPRM, 2011. 1 DVD. Escala 1.5:000.000. Equipe Executora: Da Costa, Margarida Regueira; Dantas, Carlos Eduardo de Oliveira; Melo, De Azambuja, Andressa Macêdo Silva; De Rezende, Denise Christina; Do Nascimento, Jean Ricardo da Silva; Dos Santos, André Luis M. Real; Farias, José Alexandre Moreira; Machado, Érica Cristina; Marcuzzo, Francisco Fernando Noronha; Medeiros, Vanesca Sartorelli; Rodrigues, Paulo de Tarso R.; Weschenfelder, Adriana Burin; Sistema de Informação Geográfica-SIG versão 2.0 atualizada em novembro/2011; Programa Geologia do Brasil; Levantamento da Geodiversidade. Disponível em: http://www.cprm.gov.br/publique/media/Isoietas_Totais_Anuais_1977_2006.pdf>. Acesso em: 3 dez. 2014.
- 29. REITZ, K.; DIAS, S. F. Calibragem de curva-chave de estação instável pelo método do desnível normal. Estudo de caso: Estação Bacaba, código 13886000, no Rio Tapauá, na bacia hidrográfica do Rio Amazonas. In: XII Simpósio de Recursos Hídricos do Nordeste, 2014, Natal. Anais... Porto Alegre: ABRH, 2014. p. 1-8. Disponível em: https://www.abrh.org.br/sgcv3/UserFiles/Sumarios/0903c65b715c1e547562c351c073d1fd_dc61c3ccb35 6c0c9979e39186b36c72d.pdf>. Acesso em: 28 Jan. 2015.
- 30. SEFIONE, A. L. Estudo comparativo de métodos de extrapolação superior de curvas-chave. Dissertação de Mestrado. Porto Alegre: IPH/UFRGS, 2001. 96p. Disponível em: http://hdl.handle.net/10183/3258>. Acesso em: 28 Jan. 2015.

- 31. SEFIONE, A. L.; MEDEIROS, J. D.; DORNELLES, A. M.; GOLDENFUM, J. A. Metodologia de pseudo-extrapolação para avaliação de métodos de extrapolação superior de curvas-chave. In: XIV Simpósio Brasileiro de Recursos Hídricos, 2001, Aracaju/Se. Anais... Porto Alegre: ABRH, 2001. p. 1-13.
- 32. SILVA, J. F. R. e; FARIAS, J. A. M.; COELHO, L. da SILVA; DE MELO, C. R. Revisão histórica das curvas-chave da sub-bacia 36 estudo de caso da estação Jaguaribe (36320000). In: Simpósio Brasileiro De Recursos Hídricos, 20. 2013, Bento Gonçalves. **Anais...** Porto Alegre: ABRH, 2013. p. 1-8. Disponível em: http://www.cprm.gov.br/publique/media/Evento_revisao_RegoSilva.pdf>. Acesso em: 23 fev. 2015.
- 33. SIMON, F. W.; PICKBRENNER, K.; MARCUZZO, F. F. N. Estudo do regime pluvial e fluvial em bacia hidrográfica com precipitação homogênea. In: Simpósio Brasileiro De Recursos Hídricos, 20. 2013, Bento Gonçalves. Anais... Porto Alegre: ABRH, 2013. p. 1-8. Disponível em: http://www.abrh.org.br/SGCv3/UserFiles/Sumarios/22de4a642c2c18259e4809409096e0ff 6f2356d4ea7 d3fcaba0d55bad04ebea4.pdf>. Acesso em: 30 jan. 2015.