

Universidade Federal do Ceará Centro de Ciências Departamento de Geologia

"CARACTERIZAÇÃO PETROLÓGICA E QUÍMICA DO COMPLEXO PEDRA AGUDA, CE - BRASIL"

MARIA DULCINÉA M. R. BESSA

Fortaleza (Ce) Setembro/2000 Bessa, M.D.M.R. - Complexo Pedra Aguda : Caracterização ...

Universidade Federal do Ceará Centro de Ciências Departamento de Geologia

"CARACTERIZAÇÃO PETROLÓGICA E QUÍMICA DO COMPLEXO PEDRA AGUDA, CE - BRASIL"

MARIA DULCINÉA M.R. BESSA

Orientador: Prof. Dr. Afonso Rodrigues de Almeida

Dissertação de Mestrado, apresentada à Universidade Federal do Ceará (UFC), junto ao Curso de Pós-Graduação em Geologia – Área de Concentração: Geologia do Pré-Cambriano, para obtenção do Título de Mestre.

Fortaleza (Ce) Setembro/2000

B557c	Bessa, Maria Dulcinéa M. R Caracterização petrológica e química do complexo Pedra Aguda, CE – Brasil / Maria Dulcinéa M. R. Bessa Fortaleza, 2000.
	121f. : il.; 30 cm.
	Orientador. Prof. Dr. Afonso Rodrigues de Almeida Dissertação (Mestrado em Geologia do Pré-Cambriano) Universidade Federal do Ceará
	 Petrologia. 2. Precambriano. I. Almeida, Afonso Rodrigues de. II. Universidade Federal do Ceará. III. Título. CDD 552

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE GEOLOGIA

"CARACTERIZAÇÃO PETROLÓGICA E QUÍMICA DO COMPLEXO PEDRA AGUDA, CE-BRASIL"

MARIA DULCINÉA M.R. BESSA

ORIENTADOR: Prof. Dr. Afonso Rodrigues de Almeida

Dissertação de Mestrado Apresentada e Aprovada junto ao Curso de Pós-Graduação em Geologia -Área de Concentração em Geologia do Pré-Cambriano para Obtenção do Título de Mestre.

BANCA EXAMINADORA

Prof. Dr. Alcides Nóbrega Sial 24 Prof. Dr. Clóvis Vaz Parente 15

Prof. Dr. Afonso Rodrigues de Almeida

Fortaleza, 22 de Setembro de 2000.

Resultado: Aprovada

Bessa, M.D.M.R. - Complexo Pedra Aguda : Caracterização ...

Dedico este trabalho de forma especial àqueles que me apoiaram de forma irrestrita, que souberam compreender minha ausência e que me deram força nos momentos mais difíceis desta trajetória :

> Meus pais : Valdizar e Angeluce Meu marido, amigo e companheiro : Amarildo Meus filhos : Vanessa e Vitor

<u>ÍNDICE</u>

RESUMO	I
RESUME	III
AGRADECIMENTOS	v

1 – INTRODUÇÃO	1
----------------	---

1.1 – APRESENTAÇÃO	01
1.2 – OBJETIVOS	01
1.3 – LOCALIZAÇÃO E VIAS DE ACESSO	02
1.4 – ASPECTOS FISIOGRÁFICOS	02
1.5 – METODOLOGIA	06
1.5.1 – MAPEAMENTO GEOLÓGICO	06
1.5.2 – ANÁLISES PETROGRÁFICAS	06
1.5.3 – ANÁLISES QUÍMICAS EM MINERAIS	07
1.5.4 – ANÁLISES QUÍMICAS EM ROCHA TOTAL	07
1.5.5 – ANÁLISES RADIOMÉTRICAS	08

2 –	GEOLOGIA	REGIONAL	10

3 – O COMPLEXO PEDRA AGUDA	17

4 – PETROGRAFIA	19
-----------------	----

4.1 – JOTUNITOS	20
4.2 – NORITOS	25
4.3 – CHARNO-ENDERBITOS E CHARNOCKITOS	29
4.3.1 – CHARNO-ENDERBITOS E CHARNOCKITOS DE COLORAÇÃO	
AMARELA	30
4.3.2 – CHARNO-ENDERBITOS DE COLORAÇÃO CINZA	31

5 – QUÍMICA MINERAL	33
---------------------	----

5.1 – GENERALIDADES	33
5.2 – PLAGIOCLÁSIOS	33
5.3 – PIROXÊNIOS	41
5.4 – ANFIBÓLIOS	50
5.5 – BIOTITAS	54

6 – GEOQUÍMICA	64
----------------	----

6.1 – GENERALIDADES	64
6.2 – CARACTERIZAÇÃO GEOQUÍMICA	65
6.2.1 – ELEMENTOS MAIORES E MENORES	65
6.2.2 – ELEMENTOS TRAÇOS	66
6.2.3 – ELEMENTOS TERRAS RARAS	76
6.3 – CARACTERIZAÇÃO LITOLÓGICA	78
6.4 – CARACTERIZAÇÃO SERIAL	82

6.5 – CARACTERIZAÇÃO DA FONTE	85
6.6 – CARACTERIZAÇÃO TECTÔNICA	86

7.1 – GEOBARÔMETRO Al – HORNBLENDA	101
7.2 – GEOTERMÔMETRO Ti – HORNBLENDA	102
7.3 – GEOTERMÔMETRO Hbl – PLAGIOCLÁSIO	103
7.4 – GEOTERMÔMETRO OPX	103

8 – GEOCRONOLOGIA

8.1 – METODOLOGIA E TRATAMENTO DE DADOS	105
8.2 – RESULTADOS ANALÍTICOS	106
8.3 – DISCUSSÃO E INTERPRETAÇÃO DOS RESULTADOS	108

10 – REFERÊNCIAS BIBLIOGRÁFICAS
--

ANEXO I – MAPA DE PONTOS **ANEXO II** – MAPA GEOLÓGICO

ÍNDICE DE FIGURAS

Figura 1.1	Mapa de Localização	03
Figura 1.2	Esboço Geomorfológico do Estado do Ceará	05
Figura 2.1	Região de Dobramentos Nordeste	15
Figura 2.2	Principais Domínios dos Terrenos Precambrianos do Estado do Ceará	16
Figura 4.1	Diagrama QAP (Streckeisen, 1976) e QAP (Le Maitre, 1989) para as	
	rochas do Complexo Pedra Aguda	21
Figura 4.2	Modo de ocorrência dos jotunitos e noritos do Complexo Pedra Aguda	23
Figura 4.3	Enclave microgranular em jotunito	23
Figura 4.4	Enclave de composição glimerítica em jotunito do Complexo Pedra	
	Aguda	23
Figura 4.5	Aspecto macroscópico dos jotunitos do Complexo Pedra Aguda	23
Figura 4.6	Aspecto microscópico dos jotunitos	23
Figura 4.7	Cristal de plagioclásio, com curvamento de geminação	27
Figura 4.8	Cristal dobrado de biotita em jotunito evidenciando sinais de deformação	27
Figura 4.9	Coroa de reação de anfibólio em torno de ortopiroxênio em jotunitos	27
Figura 4.10	Coroa de reação de anfibólio em torno de clinopiroxênio em jotunitos	27
Figura 4.11	Aspecto macroscópico dos noritos do Complexo Pedra Aguda	28
Figura 4.12	Aspecto microscópico dos noritos	28
Figura 4.13	Curvamento de maclas em cristal de plagioclásio dos noritos	28
Figura 4.14	Cristal dobrado de biotita em norito	28
Figura 4.15	Coroa de reação de anfibólio em torno de clinopiroxênio em noritos	28
Figura 4.16	Coroa de reação de anfibólio em torno de ortopiroxênio em noritos	28
Figura 4.17	Serrote da Pedra Aguda	29
Figura 4.18	Aspecto macroscópico dos charno-enderbitos e charnockitos de	

	coloração amarela do Complexo Pedra Aguda	32
Figura 4.19	Aspecto microscópico dos chrano-enderbitos e charnockitos	32
Figura 4.20	Charno-enderbito de coloração cinza cortando o charno-enderbito	
	amarelo	32
Figura 4.21	Aspecto microscópico dos charno-enderbitos de coloração cinza	32
Figura 5.1	Diagrama de classificação dos plagioclásios do Complexo Pedra Aguda	34
Figura 5.2	Diagramas SrO x CaO e SrO x BaO para os plagioclásios das amostras	
	D-2A e D-13 (jotunitos)	35
Figura 5.3	Diagramas SrO x CaO e SrO x BaO para os plagioclásios das amostras	
	D-04 e D-20 (noritos)	36
Figura 5.4	Diagrama de classificação dos piroxênios para jotunitos e noritos do	
	Complexo Pedra Aguda	42
Figura 5.5	Diagramas MgO x FeO e CaO x FeO para os ortopiroxênios das	
	amostras D-2A e D-13 (jotunitos)	43
Figura 5.6	Diagramas MgO x FeO e CaO x FeO para os ortopiroxênios das	
	amostras D-04 e D-120 (noritos)	44
Figura 5.7	Diagrama de classificação dos anfibólios para jotunitos e noritos do	
	Complexo Pedra Aguda	50
Figura 5.8	Diagrama de classificação das biotitas do Complexo Pedra Aguda	54
Figura 5.9	Diagramas MgO x FeO, TiO ₂ x FeO, Al ₂ O ₃ x SiO ₂ e F x SiO ₂ para as	
	biotitas dos jotunitos	56
Figura 5.10	Diagramas MgO x FeO, TiO ₂ x FeO, Al_2O_3 x SiO ₂ e F x SiO ₂ para as	
	biotitas dos noritos	57
Figura 5.11	Minerais analisados por microssonda eletrônica na amostra D-2A	
	(jotunito)	60
Figura 5.12	Minerais analisados por microssonda eletrônica na amostra D-04	
	(norito)	61
Figura 5.13	Minerais analisados por microssonda eletrônica na amostra D-13	
	(jotunito)	62
Figura 5.14	Minerais analisados por microssonda eletrônica na amostra D-20 (norito).	63
Figura 6.1	Diagramas de Harker para elementos maiores e menores para os jotunitos	

	do Complexo Pedra Aguda	67
Figura 6.2	Diagramas de Harker para elementos maiores e menores para os charno-	
	enderbitos e charnockitos do Complexo Pedra Aguda	69

Figura 6.3	Diagramas de Harker para elementos traços para os jotunitos e noritos do	
	Complexo Pedra Aguda	72
Figura 6.4	Diagramas de Harker para elementos traços para os charno-enderbitos e	
	charnockitos do Complexo Pedra Aguda	74
Figura 6.5	Diagramas multi-elementos para as rochas do Complexo Pedra Aguda	77
Figura 6.6	Padrão de distribuição dos elementos terras raras para as rochas do	
	Complexo Pedra Aguda	79
Figura 6.7	Diagramas Álcalis x SiO ₂ para caracterização litológica das rochas do	
	Complexo Pedra Aguda (Wilson, 1989)	80
Figura 6.8	Diagramas Álcalis x SiO ₂ para caracterização litológica das rochas do	
	Complexo Pedra Aguda (Middlemost, 1994)	81
Figura 6.9	Diagrama $R_1 \propto R_2$ para caracterização litológica das rochas do	
	Complexo Pedra Aguda	81
Figura 6.10	Diagrama $Na_2O + K_2O \ x \ SiO_2$ para caracterização serial das rochas do	
	Complexo Pedra Aguda	82
Figura 6.11	Diagramas Álcalis: FeOt: MgO e FeOt / MgO x SiO2 para caracterização	
	serial das rochas do Complexo Pedra Aguda	83
Figura 6.12	Diagrama Al ₂ O ₃ / (Na ₂ O + K ₂ O) x Al ₂ O ₃ / (CaO + Na ₂ O + K ₂ O) para	
	caracterização serial das rochas do Complexo Pedra Aguda	84
Figura 6.13	Diagrama $SiO_2 x TiO_2$ para caracterização do protólito das rochas do	
	Complexo Pedra Aguda	85
Figura 6.14	Diagramas Rb x Y + Nb e Nb x Y para caracterização tectônica das	
	rochas do Complexo Pedra Aguda	86
Figura 6.15	Diagrama $R_1 \ge R_2$ para caracterização tectônica das rochas do Complexo	
	Pedra Aguda	87
Figura 6.16	Diagramas Y x Zr e Zr/Al ₂ O ₃ x TiO ₂ /Al ₂ O ₃ para caracterização tectônica	

	das rochas do Complexo Pedra Aguda	88
Figura 8.1	Diagrama Idade x Etapas de evaporação dos cristais de zircão da amostra	
	D-01 (jotunitos)	106
Figura 8.2	Diagrama Idade x Etapas de evaporação dos cristais de zircão da amostra	
	D-52 (norito)	107
Figura 9.1	Enclaves de rochas noríticas do Complexo Pedra Aguda inseridos em	
	gnaisses migmatíticos	111
Figura 9.2	Diagrama Sr / Y x Y para jotunitos e noritos do Complexo Pedra Aguda	115

ÍNDICE DE TABELAS

Tabela 5.1	Química mineral dos plagioclásios do Complexo Pedra Aguda	37
Tabela 5.2	Química mineral dos piroxênios do Complexo Pedra Aguda	45
Tabela 5.3	Química mineral dos anfibólios do Complexo Pedra Aguda	52
Tabela 5.4	Química mineral das biotitas do Complexo Pedra Aguda	58
Tabela 6.1	Concentração de elementos maiores e traços para as rochas do Complexo	
	Pedra Aguda	89
Tabela 6.2	Composições normativas CIPW relativas as rochas do Complexo Pedra	
	Aguda	94
Tabela 6.3	Razões geoquímicas para as rochas do Complexo Pedra Aguda	99
Tabela 8.1	Resultados analíticos dos zircões da amostra D-01	107
Tabela 8.2	Resultados analíticos dos zircões da amostra D-52	108

ÍNDICE DE QUADROS

Quadro 7.1	Dados obtidos pelo geobarômetro Al-hornblenda em jotunitos e noritos	
	do Complexo Pedra Aguda	102
Quadro 7.2	Dados obtidos pelo geotermômetro Ti-hornblenda em jotunitos e noritos	
	do Complexo Pedra Aguda	102
Quadro 7.3	Dados obtidos pelo geotermômetro Hbl-plagioclásio em jotunitos e	
	noritos do Complexo Pedra Aguda	103
Quadro 7.4	Dados obtidos pelo geotermômetro Opx em jotunitos e noritos do	
	Complexo Pedra Aguda	103

RESUMO

O Complexo Pedra Aguda está situado na porção nordeste do Estado do Ceará. É um corpo de forma elipsoidal, cujo eixo maior mede aproximadamente 11Km e o menor 7Km e encontra-se ligeiramente orientado na direção N-S. É constituído por rochas granulíticas, predominantemente intermediárias, representadas por jotunitos e noritos e por rochas ácidas charno-enderbíticas e charnockíticas, inseridas em gnaisses migmatíticos.

Regionalmente, convencionou-se denominar D2 a deformação caracterizada por uma foliação com mergulhos suaves, quase sempre em torno de 30° que caracteriza a chamada tectônica tangencial ou tectônica de empurrões. Esta foliação na região de Aracoiaba – Baturité mostra-se com direção que varia desde 60° Az a E-W e contorna o corpo norítico que se mostra alongado segundo a direção N-S, sugerindo a época de "emplacement" pre – D2. Os corpos charnockíticos, do interior do complexo, exibem essa foliação, enquanto as rochas predominantes no complexo exibem uma estrutura aparentemente maciça, foliação incipiente, mas, ao microscópio, são notáveis os indícios de deformação plástica especialmente em biotitas e plagioclásios, sendo estes pouco ou nada observáveis em piroxênios. Assim, porque a trama da rocha é grandemente sustentada por piroxênios e plagioclásios, a textura ígnea é grandemente preservada. Em contraste, as rochas que os rodeiam, de natureza diorítica-tonalítica com a trama grandemente suportada por quartzo e biotita, exibem uma forte deformação plástica, com indícios variáveis de fusão parcial.

Ao microscópio, estas rochas se mostram com textura ora intergranular, ora subofítica, composta essencialmente por clinopiroxênios, (salita, salita/augita), ortopiroxênios (bronzita e hiperstênio), plagioclásios (labradorita, andesina (dominante)), titano-biotita, hornblenda magnesiana e quartzo. Minerais óxidos de ferro e titânio e raríssimas apatitas e rutilo são os acessórios. Actinolita / tremolita e biotita são minerais produtos da retromorfose dos piroxênios acima citados. Dados de química

em mineral separado mostram que tanto os ortopiroxênios quanto os plagioclásios exibem hiatos composicionais consideráveis indicando que tratam-se de diferentes gerações de minerais, ou seja uma assembléia mineral primária e outra desenvolvida quando do metamorfismo. Os cristais de plagioclásios, mesmo aqueles que exibem extinção indicativa de zonação, mostram padrões composicionais aleatórios, sem qualquer evidência de zonação química.

Os charno-enderbitos e charnokitos apresentam padrão de distribuição de elementos terras raras plano, com concentrações de HREE relativamente altas, fortes anomalias negativas de Sr e Eu sugerindo que estas rochas representam um magma residual altamente evoluído após o fracionamento de plagioclásio e de fases contendo LREE ou que estas rochas são o produto da fusão parcial de uma fonte que reteve plagioclásio e fases ricas em LREE.

Análises químicas de elementos maiores em rocha total sugerem que os jotunitos e noritos derivam do metamorfismo de rochas predominanemente intermediárias (SiO₂ = 51-59%), metaluminosas e sub-alcalinas que constituem uma suite cálcio-alcalina de médio K, pré-colisional do tipo arco. Seu alto Mg# (58-72), aliado aos altos teores de Cr e Ni sugerem uma fonte mantélica para estas rochas, entretanto, elas também se mostram fortemente enriquecidas em LILE (especialmente Ba e Sr), e LREE, com anomalias negativas de Nb, Ta e Zr sugerindo que estes magmas sofreram uma forte contaminação crustal.

As características geoquímicas mostradas por jotunitos e noritos, tais como baixos valores de elementos terra raras pesados e Y, altos valores de Sr e Ba e consequentemente altas razões Sr/Y e La/Yb são similares às características de magmas adakíticos, isto é, magmas gerados a partir da fusão do "slab" subductado. Os altos valores de Mg, Ni e Cr dos jotunitos e noritos, refletem a interação entre o magma adakítico e o manto.

A partir da termobarometria, estabelece-se um intervalo de temperatura e pressão entre 650° e 800° C e 2 a 4 Kbar para o metamorfismo destas rochas. Tais valores de pressão sugerem ambientes de arco magmático continental similar por exemplo, ao andino no Chile, onde a injeção de magmas básicos elevou enormemente o grau geotérmico regional em ambiente de pequena profundidade.

Os primeiros dados geocronológicos do Complexo Pedra Aguda, obtidos pelo

método da evaporação de Pb em monocristais de zircão, mostram idades de 594 ±12Ma e de 595±8 Ma, indicando provavelmente a época do metamorfismo das rochas máficas do complexo.

<u>RESUME</u>

Le Complexe Pedra Aguda est situé dans la région nord-est de l'État du Ceará (Brésil). C'est un corps de forme éliptique dont le grand axe, d'orientation N-S, mesure 11 km et le petit axe 7 km. Il est constitué par des roches granulitiques, surtout intermédiaires, représentées par des jotunites et des norites et par des roches charnoenderbitiques et charnockitiques incluses dans des gneiss migmatitiques.

Régionalement, la déformation, caractérisée par le développement d'une foliation de bas pendage (aux alentours de 30^0) est dénominée D₂ et elle caractérise une tectonique tangentielle ou tectonique de chevauchement. Cette foliation, dans la région de Aracoiaba-Baturité, présente une direction qui varie entre N60 e N90 et elle contourne le corps de norite qui est allongé dans la direction N-S, suggérant que la mise en place de ce dernier est près D₂. Les corps charnockitiques situés à l'intérieur du complexe exhibent une structure d'apparence massive, avec une foliation naissante mais, au microscope, il existe des indices de déformation plastique, surtout des biotites et des plagioclases, alors que rien n'a été observé sur les pyroxènes. Comme la trame de la roche est largement formée par les pyroxènes et les plagioclases, la structure ignée est largement préservée. Les roches encaissantes, par contre, de nature dioritiquetonalitique, essentiellement formée par du quartz et de la biotite, exhibent une forte déformation plastique, avec des niveaux variés de fusion partielle.

Au microscope, ces roche montrent une texture parfois intergranulaire, parfois ophitique, composée essentiellement par des clinopyroxènes (salite, salite/augite), orthopyroxènes (bronzite et hyperstène), plagioclases (labradorite et andesine dominante), titano-biotites, hornblende magnésienne et quartz. Des oxydes de fer et titane et de très rares apatites et rutiles représentent les minéraux accessoires. L'actinotite/trémolite et la biotite sont les résultats de la rétromorphose des pyroxènes cités plus haut. Les données de la chimie en minéraux separés montrent que aussi bien

les orthopyroxènes que les plagioclases présentent des hiatus de composition qui prouvent qu'il s'agit de différentes générations de minéraux, une des assemblées étant primaire et l'autre s'étant développée durant le métamorphisme. Les cristaux de plagioclase, mêmes ceux qui présentent une extinction indiquant une zonation, montrent des compositions à la distribution aléatoire, sans aucune évidence de zonation chimique.

Les charno-enderbites et les charnockites présentent des distributions d'éléments terres rares plates, avec des concentrations de HREE relativement fortes, avec d'importantes anomalies négatives de Sr e Eu, suggérant que ces roches représentent un magma résiduel hautement évolué aprés le fractionnement du plagioclase et des phases qui contiennent LREE ou que ces roches sont le produit de la fusion partielle d'une source qui a retenu le plagioclase et la phase riche en LREE.

Les analyses chimiques des éléments majeurs en roche totale nous montrent que les norites et les jotunites dérivent de roches essentiellement intermédiaires (SiO₂ = 51-59%) métallumineuses et sub-alcalines qui constituent une suite calcio-alcaline de moyen K, pré-colisionnelle du type arc. Son Mg# élevé (58-72), allié aux teneurs élevées en Cr et Ni suggèrent une source mantéllique pour ces roches. Cependant, elles sont fortement enrichies en LILE (surtout Ba et Sr) et en LREE, avec des anomalies négatives de Nb, Ta et Zr, ce qui suggère que ces magmas ont subi une forte contamination crustale.

Les caractéristiques géochimiques présentées par les jotunites et par les norites, comme les valeurs basses des éléments terres rares lourdes et Y, les valeurs elevées de Sr et Ba et, en conséquence, les rapports elevés Sr/Y et La/Yb sont similaires aux caractéristiques des magmas adakitiques, c´est à dire aux magmas formés à partir de la fusion de lames subductées. Les hautes valeurs de Mg, Ni et Cr des jotunites et norites montrent l'interaction entre le magma adakitique et le manteau.

A partir de la thermobarométrie a été établi un interval de températures et pressions entre 650 et 800⁰ C et 2 et 4 Kbar pour le métamorphisme de ces roches. De telles valeurs suggèrent un environnement d'arc magmatique continental semblable, par exemple, à l'arc andin au Chili, où l'injection de magmas basiques a élevé de façon anormale le degré géothermique regional.

Les premières données géochronologiques du Complexe Pedra Aguda, obtenues par évaporation de Pb en monocristaux de zircon montrent des âges de 594±12 Ma et de 598±8 Ma, indiquant probablement l'âge du métamorphisme des roches mafiques du complexe.

AGRADECIMENTOS

Em primeiro lugar a Deus, pela coragem, saúde e determinação para atingirmos nossos objetivos.

Ao prof. Dr. Afonso Rodrigues de Almeida, pela orientação conferida durante o desenvolvimento do trabalho.

À todos os professores do Departamento de Geologia, em especial aos professores José de Araújo Nogueira Neto, Michel Henry Arthaud, Clóvis Vaz Parente e Gutemberg Oliveira Martins.

À CAPES, pela concessão da bolsa de mestrado.

Ao IDACE (Instituto de Desenvolvimento Agrário do Ceará), pela concessão das ortofotocartas da região do Complexo Pedra Aguda.

Ao INCRA (Instituto Nacional de Colonização e Reforma Agrária) pela concessão de fotografias aéreas da área do trabalho.

À todos os colegas da pós-graduação, em especial ao Dálber, Helena, Hélio, Liano e Lucenilda.

À colega de pós-graduação e amiga Ângela Moraes, pelo companheirismo e ajuda real em todas as fases do trabalho.

Aos funcionários do DEGEO, em especial ao Leal e Júnior.

À todos, que de uma forma ou de outra, contribuíram para a realização dessa pesquisa.

1 – <u>INTRODUÇÃO</u>

1.1 – <u>APRESENTAÇÃO</u>

A presente dissertação é parte dos requisitos para obtenção do grau de mestre em Ciências, área de concentração Geologia do Precambriano do Curso de Pós-Graduação em Geologia do Centro de Ciências da Universidade Federal do Ceará.

Com base em dados de campo e de laboratório procura-se neste trabalho caracterizar petrográfica e quimicamente as rochas do Complexo Pedra Aguda, procurando estabelecer um modelo sobre sua gênese e evolução.

1.2 - OBJETIVOS

O objetivo principal desta pesquisa consiste na caracterização petrográfica e química dos litótipos que compõem o Complexo Pedra Aguda, bem como na caracterização da sua idade radiométrica.

1.3 – <u>LOCALIZAÇÃO E VIAS DE ACESSO</u>

O Complexo Pedra Aguda está situado na região nordeste do Estado do Ceará, a sudeste do município de Aracoiaba. Ocupa uma pequena extensão territorial na porção setentrional da Folha Itapiúna (SB.24-X-A-IV), estendendo-se ao longo da porção meridional da Folha Baturité (SB.24-X-A-I) e está compreendido entre as coordenadas $4^{0}24^{5}54^{\circ}$ e $4^{0}31^{2}24^{\circ}$ de latitude sul e $38^{0}43^{4}7^{\circ}$ e $38^{0}49^{11}^{\circ}$ de longitude oeste (Figura 1.1).

O acesso a partir da cidade de Fortaleza (CE) é feito pela rodovia CE-060 (Fortaleza-Pacatuba-Redenção-Aracoiaba) até a cidade de Aracoiaba, num percurso de 73 Km. Partindo-se da cidade de Aracoiaba, ainda pela rodovia CE - 060, percorre-se aproximadamente 2Km até o entroncamento que dá acesso a sede do município de Baturité, tomando-se neste ponto uma estrada secundária na direção sudeste por aproximadamente 10 Km até a porção central do corpo.

1.4 – <u>ASPECTOS FISIOGRÁFICOS</u>

O clima dominante na área é do tipo semi-árido, com duas estações distintas: uma chuvosa que se estende de janeiro a março e outra seca, que se prolonga pelo resto do ano (Koppen,1948 in Souza & Braga, 1984).

A cobertura vegetal da área reflete as condições desfavoráveis do meio físico. É representada por uma caatinga do tipo xerófita.

Os riachos que cortam a área fazem parte da Bacia Hidrográfica do Rio Choró. São de pequeno porte e apresentam padrão dendrítico. Os principais são: Riacho Pedra Aguda, Riacho Grande, Riacho do Jaguarão e Riacho Salgado.

Do ponto de vista geomorfológico, a área está inserida no Domínio dos Escudos e Maciços Antigos, mais precisamente no Domínio das Depressões Sertanejas (Souza, 1988) (Figura 1.2).

Bessa, M.D.M.R. - Complexo Pedra Aguda : Caracterização ...

De acordo com Souza (op. cit.), as associações litológicas que compõem as Depressões Sertanejas são representadas tanto por rochas do Complexo migmatíticogranítico e gnáissico-migmatítico como do Grupo Ceará. Mesmo com a grande

complexidade litológica, as Depressões Sertanejas compõem superfícies de aplainamento onde o trabalho erosivo truncou indistintamente os mais variados tipos de

rochas. Este fato não invalida o trabalho da erosão diferencial, destacando rochas mais resistentes e rebaixando ou dissecando os setores com associações litológicas tenras. Campos de "inselbergs" como os de Quixadá e Irauçuba, cristas quartzíticas dispersas pelos sertões, maciços sertanejos rebaixados, são exemplos da ação seletiva dos processos degradacionais.

Dentre as características que individualizam as Depressões Sertanejas, destacam-se as seguintes: grande diversidade litológica, truncamento indistinto das associações litológicas, revestimento por caatingas, pequenos encraves de cerrados nas bacias sedimentares, pouca espessura no manto de alteração das rochas, ocorrência frequente de pavimentos e paleopavimentos, deficiente capacidade de erosão linear, ocorrência dispersa de "inselbergs" e cristas residuais e o desenvolvimento de áreas de acumulação à juzante das rampas pedimentadas (Souza op. cit.).

Figura 1.2 – Esboço Geomorfológico do Estado do Ceará (Souza, 1988).

1.5 – <u>METODOLOGIA</u>

A primeira parte do trabalho consistiu de um levantamento de todo o material bibliográfico sobre a porção nordeste do Estado do Ceará, com o objetivo de se adquirir um maior conhecimento da geologia da região, bem como a seleção de material referente ao tema da pesquisa. A esta etapa sucederam-se os trabalhos de campo, com a realização do mapeamento da área e coleta de amostras para estudos mais específicos de laboratório, os quais consistiram em descrições e análises petrográficas, análises de quimismo mineral, análise química em rocha total e análises radiométricas. A última etapa consistiu da confecção do relatório final, bem como do mapa geológico. A metodologia aplicada é resumida nas páginas que seguem.

1.5.1 – MAPEAMENTO GEOLÓGICO

O mapeamento geológico do corpo foi realizado na escala 1:25.000, constando da realização de perfis ao longo de todas as estradas e caminhos da área e também fora delas, com a tomada, sempre que possível, de parâmetros estruturais e coleta sistemática de amostras. Foram usadas como bases cartográficas, as folhas Itapiuna (SB.24-X-A-IV) e Baturité (SB.24-X-A-I) da SUDENE, escala 1: 100.000, devidamente ampliadas para a escala do trabalho.

1.5.2 – ANÁLISES PETROGRÁFICAS

Um total de setenta e cinco (75) amostras foram objeto de estudo petrográfico em seções delgadas com o auxílio de um microscópio petrográfico Olympus BH-2. Nas observações efetuadas, levou-se em consideração a mineralogia e os aspectos texturais e estruturais. Não foi realizado contagem de pontos das seções delgadas, dessa forma, os valores plotados nos diagramas QAP (Figura 4.1 A e B) pág. 20, são valores normativos. As seções delgadas foram confeccionadas no Laboratório de Laminação do Departamento de Geologia da Universidade Federal do Ceará (UFC).

1.5.3 – ANÁLISES QUÍMICAS EM MINERAIS

Quatro (04) amostras foram selecionadas para realização de análise química em mineral separado (plagioclásio, ortopiroxenio, clinopiroxenio, anfibólio e biotita) por microssonda eletrônica, totalizando 83 pontos analisados. As análises foram realizadas no Laboratório de Microsonda e Microscopia Eletrônica do Departamento de Mineralogia e Petrografia (DMP) do Instituto de Geociências (IG) da Universidade de São Paulo (USP). Utilizou-se um aparelho JEOL (JXA – 8600).

1.5.4 – <u>ANÁLISES QUÍMICAS EM ROCHA TOTAL</u>

Trinta (30) amostras de rochas representativas do Complexo Pedra Aguda foram selecionadas para realização de análises químicas em rocha total. As análises foram realizadas no ACME Analitical Laboratories Ltd, Vancouver, Canadá.

O tratamento analítico envolveu a determinação dos elementos maiores (SiO₂, Fe₂O₃, MgO, CaO, Na₂O, K₂O, TiO₂, P₂O₅, MnO e Cr₂O₃), elementos traços (Ba, Ni, Sr, Zr, Y, Nb, Sc, Bi, Co, Cs, Ga, Hf, Nb, Rb, Sn, Ta, Th, Tl, W, U, V, Zr, Mo, Cu, Pb, Zn, Ni, As, Cd e Sb) e elementos terras raras (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb e Lu).

As amostras enviadas para análise foram previamente preparadas no Departamento de Geologia da Universidade Federal do Rio Grande do Norte (UFRN).

As análises químicas do ACME para elementos maiores e menores foram realizadas por plasma de acoplamento indutivo (ICP), onde as amostras foram fundidas com 1.5 gramas de LiBO₂ e dissolvidas em 100ml de ácido nítrico. Para os elementos traços a determinação foi feita por um espectrômetro de massa com plasma de acoplamento indutivo (ICP MS), onde 0,2 gramas de amostra misturados com 1,4 gramas de LiBO₂ num cadinho de grafite são fundidos a 1025°C por 25 minutos e em

seguida dissolvida em HNO_3 a 5%. A solução é diluída e então aspirada por um espectrômetro de massa ICP (PERKIN ELMER ELAN 6000) para determinação de todos os elementos.

1.5.5 – ANÁLISES RADIOMÉTRICAS

O estudo geocronológico foi realizado pelo Laboratório de Geologia Isotópica (PARÁ- ISO) do Centro de Geociências da Universidade Federal do Pará (UFPA), através do método de evaporação de Pb em monocristais de zircão. As amostras foram escolhidas de acordo com critérios geológicos e petrográficos.

Antes de serem enviadas para análise, as amostras (inalteradas) foram britadas em britador de mandíbulas e, em seguida, pulverizadas em moinho de disco. O material resultante foi peneirado e separado em frações (80-120, 120-200 e < 200 mesh). As diferentes frações foram passadas em separador eletromagnético. As frações não magnéticas foram bateadas manualmente e em seguida passadas no bromofórmio para separação dos minerais pesados. Após estes estágios, cada fração teve seus cristais de zircão separados manualmente através de lupa binocular e acondicionados em recipientes apropriados e só então enviados para análise.

O método da evaporação de Pb em monocristais de zircão consiste em aprisionar cristais de zircão pré-selecionados em um filamento de rênio em formato de canoa para subsequente introdução no espectômetro de massa.

A técnica analítica empregada no espectrômetro FINNIGAN MAT 262 utiliza dois filamentos posicionados frente a frente, sendo um filamento de evaporação, o qual contém o zircão, e um filamento de ionização, a partir do qual o Pb é analisado. O filamento de evaporação é aquecido gradativamente em temperaturas pré-estabelecidas, que constituem as etapas de evaporação. Normalmente, são realizadas três etapas de evaporação. A primeira, a 1450°C, a segunda a 1500°C e a terceira, a 1550°C. Mais raramente, dependendo da quantidade de Pb que o zircão contém, podem ser realizadas até cinco etapas de evaporação. Durante cada etapa de aquecimento, que dura aproximadamente 5 minutos, ocorre a liberação do Pb do retículo cristalino do zircão.

temperatura ambiente. Em seguida, o filamento de evaporação é desligado e o filamento de ionização é aquecido a uma temperatura em torno de 1050°C quando o Pb ali depositado é ionizado. As intensidades das emissões dos diferentes isótopos de Pb são medidas com monocoletor segundo uma varredura na seguinte sequencia de massa : 206, 207, 208, 206, 207 e 204. Cada conjunto de 10 varreduras define um bloco que fornece 18 razões ²⁰⁷Pb/²⁰⁶Pb. Em seguida, a partir das médias das razões ²⁰⁷Pb/²⁰⁶Pb dos blocos define-se uma idade para cada etapa de evaporação.

A cada etapa de evaporação são obtidos, em geral, até cinco blocos de dados. A média das razões ²⁰⁷Pb/²⁰⁶Pb desses blocos define uma idade correspondente para cada etapa. Esses dados são representados em um diagrama Idade (Ma) x Etapas de evaporação, onde observa-se que, em geral, cada etapa de evaporação fornece um platô de idades. As idades obtidas nas diferentes etapas podem apresentar diferentes valores, sendo que, normalmente observa-se um aumento nas idades no sentido das etapas de mais alta temperatura. Quando isso ocorre, são consideradas apenas as idades obtidas em temperaturas mais altas pois, neste caso, o Pb analisado é proveniente das porções mais retentivas do cristal de zircão e, portanto, mais representativas da idade de cristalização do mineral .

2 - <u>GEOLOGIA REGIONAL</u>

As primeiras referências à Geologia da Região Nordeste do Estado do Ceará, remontam ao início do século com Branner, 1902 (in Campos et al.,1976) em seu trabalho versando sobre a Geologia da Costa Nordeste do Brasil. Outros trabalhos merecem destaque como os de Crandall, 1910 ; Small, 1914; Moraes, 1924; Oliveira e Leonardos, 1943 e Meunier, 1964 (in Campos et al., 1976).

Kegel (1965), em seu trabalho sobre "A estrutura Geológica do Nordeste do Brasil", destacou as principais direções do modelamento estrutural e dos importantes lineamentos regionais. Com relação ao Estado do Ceará, reconheceu um conjunto de unidades tectônicas denominando-as de "Blocos Orogênicos" e analisando, para cada um desses blocos, o estilo estrutural característico.

De acordo com o esquema proposto por Kegel, o complexo Pedra Aguda fica compreendido no bloco Itapajé.

Brito Neves (1975) propôs a denominação de "Região de Dobramentos Nordeste" para caracterizar uma entidade tectono-geológica de limites relativamente bem definidos, cuja configuração atual se deve ao ciclo Brasiliano.

Campos et al. (1976) baseados em critérios litológicos e estruturais, distinguiram no Precambriano Indiferenciado as seguintes unidades lito-estratigráficas: Complexo Caicó, Complexo Independência, Grupo Ceará, Rochas Plutonicas Granulares e Diques Ácidos, incluindo veios de quatzo e pegmatitos. Segundo esses autores, o Complexo Caicó é constituído de uma sequência de gnaisses variados, migmatitos, incluindo lentes de metarcóseos, para-anfibolitos, quartzitos e mármores, com foliação preferencial na direção NE-SW. O Grupo Ceará foi dividido por Campos et al. (op. cit.) como uma sequência ectnítica, parametamórfica, formada por xistos, gnaisses, filitos, quartzitos com lentes carbonáticas e metapelíticas.

Segundo Braga et al. (1977), o Precambriano da região está representado por rochas do Complexo Caicó e Complexo Tamboril – Santa Quitéria; Grupo Ceará e Rochas Plutônicas Granulares.

Braga et al. (op. cit.) definem o Complexo Caicó como uma sequência constituída de gnaisses variados, incluindo lentes de metarcóseos, anfibolitos, quartzitos e calcários cristalinos subordinados, além de migmatitos com estruturas diversas, desde as mais foliadas, próprias dos gnaisses, até as mais homogêneas, como a dos anatexitos.

As fácies gnáissicas mais comuns são biotita gnaisses, hornblenda-biotitagnaisses com variações para gnaisses bandeados e gnaisses facoidais.

Os migmatitos, apresentam, segundo os autores, duas facies distintas: uma exibindo estruturas dobradas, flebítica e estromática como dominantes, mas podendo apresentar ainda estruturas oftálmica, ptigmática e de dilatação e a outra, com estruturas planares menos conspícuas, como "schlieren", nebulítica e pontuações anatexíticas. Os diversos tipos de estruturas não apresentam limites rígidos, podendo estar associados entre si.

A unidade denominada por Braga et al. (1977) como Rochas Plutônicas Granulares, reúne todas as rochas com características texturais, petrográficas e estruturais semelhantes às rochas formadas em profundidade. Esses autores, adotaram para estas rochas a mesma subdivisão proposta por Campos et al. (1976), dividindo-as em: granitóides, englobando as rochas graníticas, granodioríticas e afins; gabróides reunindo dioritos, gabros e ultrabasitos; e, sienitos.

Os granitóides constituem os corpos plutônicos ácidos, onde se agrupam as associações graníticas, granodioríticas, equigranulares ou porfiróides, de difícil individualização.

Na unidade das rochas gabróides, estão incluídos dioritos, gabros e ultrabásicas, mostrando formas elípticas ou ovóides, contatos concordantes, bruscos e às vezes transicionais, com os gnaisses e migmatitos do Complexo Caicó.

Melo et al. (1978), baseados no conceito proposto por Moody e Hill, elaboraram um modelo regmático de cisalhamento para os terrenos cearenses relacionando os falhamentos existentes com as grandes direções de transcorrência da crosta terrestre.

Gomes et al. (1981) denominaram de Rochas Plutônicas de Posicionamento Duvidoso, os charnoquitos, gabros e dioritos, os quais foram designados por Campos et al. (1976) de Rochas Plutônicas Granulares. O Complexo Nordestino definido por esses autores, abrange as unidades litoestratigráficas do Complexo Caicó, Complexo Tamboril-Santa Quitétia e Grupo Ceará, respectivamente de Braga et al. (1977) e Campos et al. (1976)

No Mapa Geológico do Estado do Ceará, elaborado por Cavalcante e Ferreira (1983), as rochas do Complexo Nordestino, no sentido de Gomes et al. (1981), foram agrupadas no Precambriano Inferior, com retrabalhamento no ciclo Brasiliano e no Precambriano Indiferenciado, constituindo uma unidade sem denominação que engloba gnaisses, migmatitos, quartzitos, cálcio-silicáticas, mármores e granitóides.

Santos e Brito Neves (1984) definiram para a Região de Dobramentos Nordeste, dois domínios fundamentais de características geológicas distintas: Os Maciços Medianos formados por terrenos graníticos-gnáissicos, e as Faixas de Dobramentos constituídas por terrenos metassedimetares e metavulcanossedimentares. O quadro geológico dessa região se completa com uma vasta ocorrência de corpos plutônicos granulares de idade sin a tardi Brasiliano e por um conjunto de falhas antigas e profundas, a maioria de caráter transcorrente e com associações litológicas miloníticas e cataclásticas .

De acordo com os conceitos de Santos e Brito neves (op. cit.), o Complexo Pedra Aguda está inserido no Sistema de Dobramentos Jaguaribano, onde em sua maior parte, são expostos terrenos do embasamento fortemente retrabalhados (Figura 3.1).

Souza e Braga (1984) representam o Proterozóico Inferior pelo Complexo migmatítico-gnaissico, que é composto por uma associação de rochas gnaissicamigmatíticas. As associações litológicas pertinentes a este complexo, foram referidas como Complexo Caicó, por Braga et al. (1977) e Complexo Nordestino por Gomes et al. (1981). No Mapa Geológico do Brasil, escala 1:2.500.000 (MME / DNPM – 1982) estão agrupadas nas unidades do Precambiano Não Diferenciado e em maior parte no Proterozoico Inferior retrabalhado no ciclo Brasiliano, englobando granitoides, migmatitos, gnaisses, granulitos, anfibolitos, rochas máficas e ultramáficas, quartzitos e rochas calciossilicáticas.

Ainda, segundo Souza e Braga (op. cit.), o Proterozóico Médio está representado por uma sequência de rochas vulcano-sedimetares e o Proterozóico Superior / Eopaleozóico pelas Rochas Plutônicas Magmáticas, representadas na área, pela associação pós-tectônica gabro diorítica anelar de Pedra Aguda e pelos diques ácidos.

Caby e Arthaud (1986) classificaram os terrenos precambrianos cearenses em três tipos: terrenos arqueanos com retrabalhamento no Brasiliano, sequências supracrustais monocíclicas, deformadas e metamorfisadas no Ciclo Brasiliano e os Complexos graníticos brasilianos. Esses autores referiram-se aos grandes lineamentos do Ceará como zonas de cisalhamento dúctil.

Monié et al (1997) dividiram a Província Borborema no Estado do Ceará em quatro domínios principais, separados por zonas de cisalhamento destrais. São eles: Domínio Médio-Coreaú ao norte, Domínio Ceará Central, Domínio "Schist Belt"e o Domínio de Patos ao sul. A área do trabalho está inserida no Domínio Ceará Central, que segundo os autores encontra-se limitado ao sul pela zona de cisalhamento Senador Pompeu e ao norte pela zona de cisalhamento Sobral – Pedro II.

Estão expostos neste Domínio, "nappes" pluriquilométricas envolvendo ortognaisses do embasamento retrabalhado no pre-Brasiliano e metassedimentos da cobertura Proterozóica, os quais foram emplacados na direção oeste-sudoeste durante espessamento crustal (Caby e Arthaud, 1986 in Monié et al., 1997).

Arthaud et al. (1998) dividiram os terrenos Precambrianos do Estado do Ceará em pelo menos cinco domínios crustais a saber : Piancó - Alto Brígida, Granjeiro, Sistema Orós – Jaguaribe, Ceará – Central e Nw do Ceará (Figura 3.2).

O Complexo Pedra Aguda está inserido no Domínio Ceará – Central, que é , segundo os autores, caracterizado por uma tectônica tangencial de baixo ângulo, resultando na ampla ocorrência de estruturas em "nappes' no setor central e norte, envolvendo um embasamento gnáissico policíclico, que inclui sequências do tipo greenstone com metabasaltos toleíticos e komatiíticos, metavulcânicas ácidas com associações de Fe-metachertes e mármores impuros e ainda lacólitos de metaperidotitos gabróicos, com intrusões de plutons de composição tonalítica (TTG) em todas estas unidades e uma cobertura alóctone, representada por uma sequência de metassedimentos do tipo plataformal e por intercalações de metavulcânicas máficas e ácidas ricas em potássio, de idade U-Pb em zircão de 780 Ma.

Na região a oeste da cidade de Quixadá aflora uma sequência composta de metagrauvacas, metapelitos, quatzitos, biotita paragnaisses e rochas máficas (Martins et al. , 1998). Dados de Sm-Nd nas metagrauvacas desta sequência forneceu idades T(DM) de 2.22 a 2.26 Ga e valores de \in_{Nd} (2200 Ma) de 0.41 a 2.85. Uma isócrona de rocha total para anfibolitos da sequência forneceu uma idade de 2.236 ± 55 Ma (Martins et al., 1998).

Estudos de campo por Martins et al.(1998) indicam que esta sequência foi subsequentemente intrudida por plutons félsicos, posteriormente transformados em gnaisses tonalíticos e granodioríticos. Uma idade U-Pb em zircão de 2.131 ± 11 Ma de um gnaisse tonalítico define a época da colocação do pluton na sequencia. Dados de Sm-Nd destes gnaisses tonalíticos mostram idade T(DM) de 2.23 e valores de $\in_{Nd}(2150 \text{ Ma})$ de + 1.89. Baseado nas relações de campo e dados geocronológicos, este complexo parece ser um remanescente preservado de um terreno de arco de ilha.

As coberturas tércio-quaternárias representadas pelos depósitos colúvio / eluviais e pelas aluviões depositadas nas calhas das principais drenagens, completam o quadro geológico da região.

Figura 2.1 - Região de Dobramentos Nordeste (Santos e Brito Neves, 1984).

Figura 2.2 – Principais Domínios dos Terrenos Precambrianos do Estado do Ceará (Arthaud et al., 1998).
3 – <u>O COMPLEXO PEDRA AGUDA</u>

O Complexo Pedra Aguda foi colocado por Campos et al. (1976) na unidade denominada de Rochas plutônicas granulares. Estes autores estabeleceram critérios litoestratigráficos para a individualização desta unidade precambriana, propondo desta forma três subdivisões para ela: rochas granitóides, rochas gabróides e sienitos.

Braga et al. (1977) adotaram a mesma subdivisão proposta por Campos et al. (op. cit.) para a individualização das rochas granulares, com os granitóides englobando as rochas graníticas, granodioríticas e afins, as gabróides reunindo os dioritos, gabros e ultrabasitos e os sienitos.

De acordo com Braga et al. (1977), a unidade denominada de rochas grabróides é bem representada pelo corpo de Pedra Aguda.

Gomes et al. (1981) denominaram as Rochas plutônicas granulares de Campos et al. (1976) e Braga et al. (1977) de Rochas de posicionamento duvidoso, englobando nesta unidade as rochas gabro-dioríticas de Pedra Aguda.

Souza e Braga (1984) caracterizaram o Proterozóico Superior / Eopaleozóico pela unidade denominada Rochas plutônicas magmáticas. Segundo esses autores, as rochas plutônicas desta unidade estão representadas na área do projeto por três corpos de características texturais e petrotectônicas próprias, documentando uma atividade magmática moderada. Estes corpos estariam relacionados ao Ciclo Brasiliano, com base em dados geocronológicos, relações de campo e feições petroestruturais e seriam eles representados pela associação sin-tectônica do granito da Serra Azul, associação tarditectônica tipo granodiorito de Quixadá e pela associação pós-tectônica gabro-diorítica de Pedra Aguda.

Segundo Souza e Braga (1984) as rochas encaixantes do Complexo Pedra Aguda são gnaisses migmatíticos do embasamento transamazônico, de coloração cinza claro e/ou escuro, com estrutura gnáissica, mostrando intercalações de finos leitos félsicos / máficos nebulíticos e anatexíticos. Os constituintes paleossomáticos são biotita e hornblenda formando ora pequenos núcleos básicos, ora finos leitos, ora palhetas distribuídas difusamente, segundo a orientação geral. Os neossomas são de coloração clara, granulação média e de composição granítica. Os contatos das encaixantes com as rochas de complexo, são bruscos.

Ainda segundo Souza e Braga (op. cit.), o Complexo Pedra Aguda é constituído petrograficamente por associações litológicas básicas, intermediárias e ácidas, destacando-se entre elas gabros, dioritos, granitos e diques ácidos e/ou intermediários.

Os dioritos são os tipos petrográficos dominantes, mostrando uma coloração cinza, constituídos por piroxênios, anfibólios, biotita, feldspato e quartzo. Apatita e opacos são os acessórios. Localmente, os dioritos se mostram gnaissificados ou formando corpos graníticos-gnaissicos, resultantes da injeção de granitos em dioritos.

Os corpos gabróicos ocorrem em íntima associação com os dioritos, porém são marcantes na porção central da estrutura onde puderam ser individualizados. São rochas de cor cinza escuro, granulação média a grossa, compostas essencialmente por feldspatos, piroxênio, anfibólio e biotita. Os minerais acessórios compreendem apatita, zircão e opacos.

Os granitos ocorrem em maior expressão na porção central da estrutura, formando um pico, denominado Pedra Aguda, intrudido nas associações litológicas gabro-dioríticas. São de cor cinza claro, granulação fina a média, compostos essencialmente por feldspato potássico, plagioclásio e biotita e como acessórios, opacos e epidoto.

4- <u>PETROGRAFIA</u>

O Complexo Pedra Aguda constitui-se de um corpo de forma elipsoidal, cujo eixo maior mede aproximadamente 11 Km e o menor 7 Km e encontra-se ligeiramente orientado segundo a direção N-S.

As rochas encaixantes do complexo são gnaisses migmatíticos que, macroscopicamente apresentam granulação média, estrutura gnaissica, com alternância de faixas máficas e félsicas nebulíticas e anatexíticas. Os paleossomas são constituidos por biotita e hornblenda e os neossomas são de coloração clara e composição quartzofeldspática. Alguns afloramentos destas encaixantes são encontrados no interior do corpo (ver mapa).

Ao longo do trecho entre o Serrote Pedra Aguda e a rodovia CE – 060 são encontradas rochas supracrustais do Grupo Ceará (xistos, quartzitos e mármores). A relação de contato entre estas rochas e os gnaisses não foram encontradas.

Ao microscópio, os gnaisses apresentam textura granolepidoblástica, constituida por leitos quarzo feldspáticos e leitos constituidos por biotita (predominante) e hornblenda.

A mineralogia encontrada é constituida por plagioclásio, quartzo, microclina, biotita e anfibólio. Como acessórios estão presentes apatita, titanita, zircão e minerais opacos. Os produtos de alteração mais comuns são clorita, epidoto, sericita e carbonato. Alguns feldspatos encontram-se pertitizados e a presença de estrutura mimerquítica é comum.

O contato entre as rochas encaixantes e as rochas do complexo é marcado por uma zona intensamente deformada composta por rochas de composição tonalítica, apresentando estrutura gnáissica, localmente migmatitizada, formadas por faixas mais ou menos contínuas de minerais ferro-magnesianos (hornblenda e biotita) e minerais quartzo-feldspáticos.

A foliação destas rochas de borda de composição tonalítica se mostra concordante com a foliação regional, que por sua vez é paralela aos contatos com o Complexo Pedra Aguda.

Em seção delgada, as rochas de borda apresentam textura granolepidoblástica. A mineralogia essencial é representada por plagioclásio, quartzo, biotita, anfibólio e microclina. Os acessórios comumente encontrados são rutilo, apatita, fluorita e minerais opacos, enquanto a sericita é o principal mineral secundário. Os efeitos deformacionais são marcados pelo estiramento de cristais, principalmente quartzo, extinção ondulante do quartzo e dos feldspatos e pelo encurvamento de alguns cristais de biotita.

O Complexo Pedra Aguda propriamente dito, e que é objeto deste trabalho é constituído por rochas granulíticas de composição predominantemente intermediária, ocorrendo ainda representantes básicos e ácidos.

Os tipos litológicos básicos e intermediários formam um conjunto com características petrográficas e químicas bastante semelhantes e são representadas na área, de acordo com a classificação QAP (Le Maitre, 1989) por jotunitos e noritos. Dessa forma, as rochas aqui designadas como "jotunitos" podem ser enquadradas composicionalmente como quartzo-monzodioritos e monzodioritos com hiperstênio e os "noritos" como dioritos com hipertênio (Figura 4.1 A e B).

Os termos ácidos são predominantemente charno-enderbitos equivalentes em composição a granodioritos, com apenas uma amostra (D-40) no campo dos charnockitos, ou seja de composição monzogranítica (Figura 4.1 A e B).

$4.1 - \underline{JOTUNITOS}$

São enquadradas sob esta denominação as rochas com composição no campo dos quartzo-monzodioritos e monzodioritos, devido aos litótipos destes dois tipos mostrarem modo de ocorrência e características petrogáficas e químicas bastante semelhantes, com variação basicamente no teor de quartzo. Bessa, M.D.M.R. - Complexo Pedra Aguda : Caracterização ...

Figura 4.1 – A: Diagrama QAP (Streckeisen, 1976) e B: Diagrama QAP mostrando os termos especiais usados para rochas charnockíticas (Le Maitre, 1989). Valores normativos.

São os tipos petrográficos dominantes e estão presentes em toda a área do complexo (ver mapa), sempre associados aos noritos, o que não permitiu sua individualização em mapa como uma unidade separada. Ocorrem na sua grande maioria em blocos arredondados, apresentando estrutura maciça (Figura 4.2-Prancha I), e mais raramente mostrando uma foliação bastante incipiente, principalmente quando próximas a borda do corpo.

Enclaves microgranulares e diques sinplutônicos estão presentes em alguns afloramentos. Os enclaves são centimétricos e exibem diferentes formas (elipsoidais, arredondadas e mais raramente angulosas) (Figura 4.3- Prancha I), mas normalmente ocorrem em pequenas quantidades. Os diques variam de centimétricos a métricos, via de regra com contatos bruscos e sinuosos. A composição de ambos é semelhante a da rocha hospedeira, porém com granulação sempre mais fina. Enclaves de composição glimerítica (flogopita, plagioclásio, clinopiroxênio e rutilo) são encontrados ao longo da estrada que liga Jaguarão à Fazenda Assunção (ver mapa). São enclaves de tamannho e formas variados e que lembram muitas vezes enclaves surmicáceos, encontrados em granitos tipo S (Figura 4.4 – Prancha I).

Macroscopicamente, os jotunitos são rochas de coloração cinza escuro com pontuações esbranquiçadas e granulação fina a média, estrutura maciça e mais raramente foliada (Figura 4.5 – Prancha I), compostas por minerais ferro-magnesianos (piroxênios, anfibólio e biotita) e feldspatos, representados principalmente por plagioclásio.

Ao microscópio, preservam grandemente sua textura ígnea (intergranular variando a subofítica). A deformação é evidenciada pela ocorrência de cristais dobrados de biotita (Figura 4.8 – Prancha II), curvamento das maclas de alguns plagiocásios (Figura 4.7 – Prancha II), extinção ondulante em cristais de quartzo e alguns feldspatos. São compostos essencialmente por plagioclásio (60%). Ortopiroxênio, clinopiroxênio, anfibólio e biotita somam aproximadamente 40% e em quantidade acessória estão presentes apatita, minerais opacos, zircão, quartzo e ocasionalmente rutilo, podendo ainda ocorrer carbonato, sericita e mica branca como produtos de alteração (Figura 4.6-Prancha I).

O plagioclásio, na sua grande maioria é representado pela andesina (An_{40-50}) , podendo ocorrer mais raramente labradorita (An_{50-60}) . Está presente em cristais anédicos

Bessa, M.D.M.R. - Complexo Pedra Aguda : Caracterização ...

4.4

PRANCHA I

- Figura 4.2 Modo de ocorrência dos jotunitos e noritos do Complexo Pedra Aguda. Blocos arredondados exibindo estrutura maciça.
- Figura 4.3 Enclave microgranular de dimensão centimétrica e forma elipsoidal em jotunito.
- Figura 4.4 Enclave de composição glimerítica exibindo forma irregular com dimensão centimétrica em jotunito do Complexo Pedra Aguda.
- Figura 4.5 Aspecto macroscópico dos jotunitos. Rocha de coloração cinza escuro, granulação média e estrutura maciça.
- Figura 4.6 Aspecto microscópico dos jotunitos, apresentando cristais de plagioclásio, piroxênio, anfibólio e biotita (D-01) (NC 10X).

e principalmente subédricos, geminados segundo as leis da Albita, Carslbad e mais raramente segundo a lei da Periclina, sendo ainda comum em alguns cristais a combinação Albita-Carslbad. Alguns plagioclásios podem apresentar-se fraturados, com algumas fraturas preenchidas por material secundário. Inclusões de biotita, piroxênio, apatita opacos e rutilo podem estar presentes. Em algumas amostras, o plagioclásio pode conter inúmeras e finíssimas agulhas, provavelmente de rutilo, conferindo ao mesmo um aspecto "nublado". Seus produtos mais comuns de alteração são sericita, mica branca e carbonato.

Os piroxênios são representados tanto pelos clinopiroxênios (salita / augita), como pelos ortopiroxênios (hiperstênio e bronzita).Os clinopiroxênios ocorrem em cristais anédricos, normalmente arredondados, constituindo os núcleos envolvidos por anfibólio e em cristais subédricos de hábito prismático (Figura 4.10 –Prancha II). Raramente apresentam geminação. Mostram-se com frequência fraturados, por vezes fragmentados. Alguns planos de fraturas encontram-se preenchidos por material de alteração. Inclusões de apatita e minerais opacos são comuns. Os ortopiroxênios, a exemplo dos clino, também ocorrem constituindo os núcleos residuais da transformação para hornblenda (Figura 4.9 –Prancha II) e em cristais prismáticos, normalmente mais desenvolvidos que os prismas de clinopiroxênios. Também podem ocorrer fraturados, com bordas irregulares, alteradas pela transformação em anfibólio. Alguns planos de fraturas acham-se preenchidos por minerais opacos.

Hornblenda magnesiana é o anfibólio presente. Ocorre algumas vezes em cristais bem desenvolvidos e outras vezes (maioria) com características secundárias de substituição-alteração dos piroxênios (Piroxênio + Plagioclásio \rightarrow Anfibólio) constituindo as coroas de reação em torno dos piroxênios (Figura 4.9 e 4.10 –Prancha II). Mostram pleocroismo variando de marrom claro a marron escuro avermelhado, refletindo o alto teor de titânio destes minerais. Contém inclusões de plagioclásio, apatita, opacos, zircão e biotita.

A biotita ocorre em cristais subédricos com pleocroismo variando de marrom claro (amarelado) a marrom escuro (avermelhado). Ocorre frequentemente associada a hornblenda. Por vezes são encontrados cristais dobrados, indicativos de efeitos tectônicos (Figura 4.8 –Prancha II). Pode conter inclusões de apatita, opacos, zircão e rutilo. Alguns planos de clivagem encontram-se preenchidos por minerais opacos (Figura 4.8 – Prancha II).

Os minerais opacos são representados provavelmente por óxidos e sulfetos de ferro. Ocorrem em cristais anédricos como inclusões ou associados principalmente ao piroxênio, anfibólio e biotita. Também podem ocorrer preenchendo planos de fraturas e clivagens de alguns componentes essenciais.

O quartzo ocorre em cristais irregulares, ocupando posições intersticiais, por vezes exibindo extinção ondulante. É praticamente ausente nas composições monzodioríticas.

A apatita ocorre em pequenos cristais aciculares, prismáticos e hexagonais, normalmente inclusa nos demais constituintes da rocha.

Podem ainda está presentes pequenos cristais de zircão, na forma de inclusões, principalmente na biotita e no anfibólio e cristais de rutilo que ocorrem como finíssimas agulhas em alguns plagioclásios ou ainda em cristais irregulares inclusos principalmente na biotita.

Mica branca, sericita e carbonato apresentam-se em diminutos cristais anedrais formados pela alteração dos plagioclásios.

$4.2 - \underline{NORITOS}$

Os noritos mostram modo de ocorrência idêntico aos jotunitos e ocorrem intimamente associados aos mesmos e desta forma foram agrupados e individualizados no mapa na mesma unidade geológica que os jotunitos (ver mapa).

Macroscopicamente, são rochas mesocráticas, isotrópicas, por vezes incipientemente foliadas, com granulação variando de fina a média e de coloração cinza escuro, na qual sobressaem-se pontuações esbranquiçadas representadas por feldspatos (Figura 4.11 – Prancha III). Os máficos presentes são piroxênio, anfibólios e biotita

Ao microscópio, a exemplo dos jotunitos, mantém preservada sua textura ígnea. Mostram uma granulação variando de fina a média e assim como os jotunitos são compostos essencialmente por plagioclásio (\cong 60%), piroxênio, anfibólio e biotita (\cong 40%), bem como , apatita, opacos, zircão e rutilo em escala acessória. Os produtos de alteração mais comuns são sericita e carbonato. (Figura 4.12 – Prancha III).

O plagioclásio é representado pelas variedades andesina-labradorita, com o amplo predomínio da andesina. Apresenta-se em cristais anedrais e subedrais, maclados total ou parcialmente segundo as leis da Albita, Carslbad e Periclina. Alguns cristais mostram-se zonados. Observa-se também extinção ondulante e em certos cristais curvamento de maclas (Figura 4.13 –Prancha III), caracterizando efeito tectônico. Alguns cristais exibem ranhuras de alteração para sericita, mica branca e carbonato. Como inclusões podem ocorrer anfibólio, piroxênio, apatita e opacos.

O clinopiroxênio está representado por cristais de salita e augita, no limite salita/augita, os quais mostram-se em cristais predominantemente anedrais e mais raramente subedrais, fraturados, às vezes geminados. Aparecem novamente constituindo os núcleos residuais da transformação para hornblenda (Figura 4.15 –Prancha III). Inclusões de opacos, biotita e apatita são observadas nos clinopiroxênios. O ortopiroxênio é representado pela bronzita e pelo hiperstênio, ocorrendo em cristais anedrais, subedrais e por vezes euedrais. São via de regra fraturados e mostram inúmeras pequenas inclusões, algumas de biotita e outras não identificadas. Sua alteração/transformação para hornblenda também é observada (Figura 4.16 –Prancha III).

O anfibólio é a hornblenda magnesiana. Ocorre em cristais anedrais (dominantes) e subedrais, algumas vezes fraturados, outras vezes geminados. São formados às expensas dos piroxênios, envolvendo-os parcial ou totalmente (Figuras 4.15 e 4.16 – Prancha III). Como inclusões observam-se apatitas, opacos e zircão.

A biotita, também titanífera, ocorre em lamelas pardas, subedrais e anedrais, sempre associada aos piroxênios e hornblenda. É comum conter inclusões de apatita , zircão e opacos, com este último também algumas vezes preenchendo os seus planos de clivagem. Algumas biotitas também contém inclusões de rutilo. Cristais dobrados são encontrados, refletindo a deformação sofrida (Figura 4.14 –Prancha III).

A apatita e os minerais opacos ocorrem principalmente na forma de inclusões em quase todos os constituintes da rocha, ou no caso dos opacos em pequenos cristais associados a piroxênios, biotitas e anfibólios.

Zircão ocorre em vários cristais, normalmente inclusos na biotita e hornblenda.

O rutilo tanto ocorre associado aos constituintes da rocha, como na forma de inclusão, principalmente na biotita.

Sericita e carbonato são comuns como produtos de alteração do plagioclásio.

4.10

PRANCHA II

- Figura 4.7 Cristal de plagioclásio em jotunito, com curvamento de geminação, evidenciando sinais de deformação plástica (D-01) (NC 10X).
- Figura 4.8 Cristal dobrado de biotita em jotunito, refletindo sinais de deformação. Os planos de clivagem acham-se preenchidos por minerais opacos (D-13) (LN 10X).
- Figura 4.9 Amostra de jotunito mostrando coroa de reação de anfibólio em torno de ortopiroxênio (D-05) (LN – 10X).
- Figura 4.10 Amostra de jotunito mostrando coroa de reação de anfibólio em torno de clinopiroxênio (D-2 A) (LN-10X).

4.11

4.13

4.15

PRANCHA III

- Figura 4.11 Aspecto macroscópico dos noritos do Complexo Pedra Aguda. Rocha de coloração cinza escuro, granulação fina a média exibindo estrutura maciça (D-04).
- Figura 4.12 Aspecto microscópico dos noritos. Presença de plagioclásio, piroxênio, anfibólio e biotita (D-04) (NC-10X)
- Figura 4.13 Cristal de plagioclásio em norito exibindo sinais de deformação plástica (D-52) (NC-10X).
- Figura 4.14 Cristal de biotita curvado em norito como resultado da deformação (D-52) (NC-10X).
- Figura 4.15 Coroa de reação de anfibólio em torno de clinopiroxênio em amostra de norito (D-38) (LN-10X).
- Figura 4.16 Coroa de reação de anfibólio em torno de ortopiroxênio em amostra de norito (D-38) (LN-10X).

4.3 – CHARNO-ENDERBITOS E CHARNOCKITOS

Estes termos são equivalentes em composição aos granodioritos e monzogranitos com hiperstênio respectivamente (Figura 4.1 A e B). Representam os termos ácidos do complexo e ocorrem próximos a sua porção central (ver mapa), formando um Serrote denominado Pedra Aguda (Figura 4.17). Presença de feições que assemelham-se a diques sinplutônicos e enclaves microgranulares de composição jotunítica e norítica, sugere uma relação de contemporaneidade entre os charno-enderbitos e charnockitos e as rochas máficas do complexo.

Figura 4.17- Serrote da Pedra Aguda, formado por charno-enderbitos e charnockitos, localizado próximo a porção central do Complexo Pedra Aguda.

Em campo, são representados por dois tipos petrográficos diferentes. O primeiro, constituido por charno-enderbitos e charnockitos de coloração amarelo-claro, com uma foliação bem definida, marcada pelo estiramento de cristais de quartzo e o segundo por charno-enderbitos de coloração cinza-claro, igualmente foliados e que ocorrem cortando o primeiro tipo.

4.3.1–<u>CHARNO-ENDERBITOS E CHARNOCKITOS DE COLORAÇÃO</u> <u>AMARELA</u>

Entre as rochas ácidas, são os termos dominantes. O contato com os jotunitos e noritos é brusco.

Macroscopicamente, são rochas de coloração amarelo-claro, granulação fina a média e foliadas (Figura 4.18 –Prancha IV). A foliação é marcada pelo estiramento de cristais de quartzo.

Ao microscópio, mostram textura granoblástica e são essencialmente constituidas por quartzo, microclina e plagioclásio (\cong 90%). Biotita, honblenda, granada, sillimanita, hiperstênio, minerais opacos, fluorita e rutilo ocorrem em quantidades subordinadas (Figura 4.19 – Prancha IV).

O quartzo ocorre em cristais anedrais, na maioria das vezes estirados e com forte extinção ondulante. A recristalização em sub-grãos é frequente. Algumas vezes forma com o plagioclásio estruturas mimerquíticas.

A microclina apresenta-se em cristais anédricos e subédricos, com alguns deles mostrando a geminação xadrez característica, mas com a grande maioria exibindo um intenso processo de exsolução de cristais de albita, permitindo desta forma, classificá-los como mesopertitas. Em algumas amostras, este processo de exsolução chega a atingir 70% dos cristais. Pequenas fraturas preenchidas por material secundário são observadas, assim como inclusões de sillimanita.

O plagioclásio ocorre em cristais anedrais e subedrais, geminados ou não, com a geminação da Albita sendo a mais comum. Alguns cristais encontram-se sericitizados.

A biotita ocorre em cristais subédricos, lamelares, normalmente associados à granada. Contém inclusões de minerais opacos.

A hornblenda é o anfibólio presente e ocorre em cristais subédricos .

A granada é representada por cristais bem formados ou parcialmente fragmentados. Ocorre associada à biotita e sillimanita e pode conter algumas fraturas preenchidas por material secundário.

Sillimanita está presente em cristais estreitos e alongados com aspecto fibroso, ora em feixes, ora isolados, por vezes associada à granada .

O ortopiroxênio é representado pelo hiperstênio, que ocorre em pequenos cristais prismáticos.

Os minerais opacos ocorrem em cristais anédricos, às vezes subédricos, inclusos na biotita ou associados aos demais constituintes da rocha.

A fluorita e o rutilo ocorrem via de regra em poucos cristais fragmentados.

4.3.2- CHARNO-ENDERBITOS DE COLORAÇÃO CINZA

Estas rochas estão presentes em pequena quantidade e ocorrem cortando os charno-enderbitos e charnockitos de coloração amarela (Figura 4.20 –Prancha IV). Apresentam foliação concordante com a destes últimos. São rochas de coloração cinzaclaro e granulação fina, eventualmente média . Ao microscópio, apresentam textura granoblástica.. São compostas por plagioclásio, quartzo, microclina, biotita, apatita, minerais opacos, rutilo e fluorita (Figura 4.21 –Prancha IV).

4.18

4.19

4.20

4.21

PRANCHA IV

- Figura 4.18 Aspecto macroscópico dos charno-enderbitos e charnockitos de coloração amarela do Complexo Pedra Aguda. Rocha de cor amarelo claro, granulação média, com foliação marcada pelo estiramento de cristais de quartzo.
- Figura 4.19 Aspecto microscópico dos charno-enderbitos e charnockitos. Em evidência, cristais de mesopertitas, além de quartzo e plagioclásio (D-40) (NC – 10X).
- Figura 4.20 Fotografia evidenciando o charno-enderbito de coloração cinza e granulação fina, cortando o charno-enderbito amarelo.
- Figura 4.21 Aspecto microscópico dos charno-enderbitos de coloração cinza, compostos essencialmente de quartzo e feldspatos (D-36) (NC 10X).

5 – QUÍMICA MINERAL

5.1 – <u>GENERALIDADES</u>

Quatro amostras, sendo duas de jotunitos (D-2A e D-13) e duas de noritos (D-04 e D-20) foram selecionadas para realização de análises químicas por microssonda eletrônica, por serem estes, os tipos petrográficos predominantes no Complexo Pedra Aguda.

Foram analisados separadamente para cada amostra, plagioclásio, ortopiroxênio, clinopiroxênio, anfibólio e biotita, perfazendo um total de 83 pontos.

As análises químicas de minerais foram realizadas no Laboratório de Microssonda Eletrônica do DPM – IG / USP (São Paulo/SP).

Os resultados obtidos são tratados no "software" MINPET 2.02 (Richard, 1995), que contém várias metodologias para o cálculo das fórmulas estruturais, bem como os principais diagramas de classificação e são mostrados nas tabelas 5.1, 5.2, 5.3 e 5.4.

5.2 – <u>PLAGIOCLÁSIOS</u>

Foram analisados um total de 28 pontos para plagioclásio, distribuídos nas amostras D-2 A, D-04, D-13 e D-20. Os resultados das análises estão mostrados na tabela 5.1.

Cristais anedrais, sem geminação e subedrais geminados segundo a lei da Albita e Periclina, zonados e não zonados, em contato com orto e clinopiroxênio, anfibólio e biotita foram analisados (Figuras 5.11 a 5.14). Os plagioclásios, tanto dos jotunitos como dos noritos são classificados como andesina (An₄₀₋₅₀), com apenas dois pontos das amostras D-2A (jotunito) e D-04 (norito) plotando no campo dos plagioclásios cálcicos, ou seja, labradorita (An₅₅₋₆₀) (Figura 5.1). Muito embora este conjunto de dados sugira uma gradação desde labradorita a andesina, tanto para jotunitos como para noritos, as amostras quando analisadas individualmente exibem hiatos composicionais (Figura 5.1).

Figura 5.1 – Classificação dos plagioclásios do Complexo Pedra Aguda. (A para jotunitos e B para noritos).

Os plotes SrO x BaO e SrO x CaO (Figura 5.2) para os plagioclásios das amostras individuais tanto de jotunitos como noritos evidenciam estes hiatos composicionais.

O cálculo estrutural dos plagioclásios foi realizado de acordo com o método de Deer et. al. (1966), tendo como base 32 oxigênios.

Figura 5.2 – Diagramas SrO x CaO e SrO x BaO para os plagioclásios das diferentes amostras de jotunitos (D–2A e D-13).

Figura 5.3 – Diagramas SrO x CaO e SrO x BaO para os plagioclásios das diferentes amostras de noritos (D-04 e D-20).

Em cristais isolados (Figuras 5.11 - C4, 5.12 - C2 e 5.13 - C2) onde foram realizados perfis borda – núcleo, não se evidencia zoneamento composicional normal, nem tão pouco oscilatório.

AMOSTRAS	D-13						
	JOTUNITO						
Análises	C1	c2	c2	c2	c2	c2	C2
Locaçao Mineral) DI) DI	Z DI	3 DI	4 DI	Э РІ	0 DI
winteral	ГІ	F1	F1	F1	F1	F1	F1
SiO2	58.329	58.493	58.61	58.771	57.678	57.951	57.327
TiO2	0.011	0.070	0.021	0.027	0.026	0.000	0.000
Al2O3	26.552	26.221	25.869	26.231	26.970	26.753	26.276
FeO	0.069	0.039	0.000	0.034	0.060	0.061	0.000
MnO	0.000	0.000	0.000	0.004	0.000	0.001	0.012
MgO	0.003	0.000	0.001	0.000	0.012	0.016	0.001
SrO	0.246	0.352	0.311	0.351	0.300	0.290	0.264
BaO	0.066	0.065	0.063	0.205	0.133	0.132	0.000
CaO	8.289	8.047	7.669	7.926	8.739	8.579	8.332
Na2O	6.165	6.074	6.497	6.260	5.617	5.842	6.022
K2O	0.215	0.229	0.203	0.428	0.333	0.328	0.260
Total	99.95	99.59	99.24	100.24	99.87	99.95	98.49
Si	10.436	10.493	10546	10.500	10.346	10.385	10.410
Al	5.595	5.540	5.482	5.519	5.697	5.646	5.619
Ti	0.001	0.009	0.003	0.004	0.004	0.000	0.000
Fe ²	0.010	0.006	0.000	0.005	0.009	0.009	0.000
Mn	0.000	0.000	0.000	0.001	0.000	0.000	0.002
Mg	0.001	0.000	0.000	0.000	0.003	0.004	0.000
Sr	0.030	0.040	0.030	0.040	0.030	0.030	0.030
Ba	0.005	0.005	0.004	0.014	0.009	0.009	0.000
Ca	1.589	1.547	1.478	1.517	1.679	1.647	1.621
Na	2.139	2.113	2.267	2.169	1.954	2.030	2.120
К	0.049	0.052	0.047	0.098	0.076	0.075	0.060
Cátions	19.855	19.805	19.857	19.867	19.807	19.835	19.862
X	16.032	16.042	16.031	16.023	16.047	16.031	16.029
Z	3.793	3.763	3.826	3.844	3.760	3.804	3.833
Ab	56.60	56.9	59.80	57.30	52.70	54.10	55.80
Na	42.10	41.7	39.00	40.10	45.30	43.9	42.60
Or	1.30	1.40	1.20	2.60	2.00	2.00	1.60

Tabela 5.1 – Química mineral dos plagioclásios do Complexo Pedra Aguda

Tabela	5.1-	Química	mineral	dos	plagioclásios	do	Complexo	Pedra	Aguda
		(continua	ção)						

AMOSTRAS	D-13	D-13	D-20	D-20	D-20	D-20	D-20
	JOTUNITO	JOTUNITO	NORITO	NORITO	NORITO	NORITO	NORITO
Análises Loggoão	C3	c4	c2	c3	c3	c4	c4
Mineral	PI	PI	PI	PI	2 Pl	PI	∠ PI
SiO2	58.425	59.209	57.195	58.621	57.889	55.687	57.063
TiO2	0.000	0.016	0.041	0.026	0.000	0.009	0.000
Al2O3	26.499	26.072	26.947	25.915	26.105	27.121	26.755
FeO	0.000	0.130	0.017	0.063	0.025	0.024	0.040
MnO	0.024	0.012	0.000	0.000	0.015	0.010	0.000
MgO	0.000	0.000	0.000	0.013	0.000	0.000	0.015
SrO	0.321	0.390	0.273	0.274	0.362	0.333	0.266
BaO	0.017	0.098	0.095	0.058	0.135	0.127	0.061
CaO	8.193	7.509	8.956	7.953	8.053	9.452	8.619
Na2O	5.931	6.211	5.581	5.832	5.812	5.413	5.822
K2O	0.302	0.338	0.374	0.502	0.541	0.266	0.418
Total	99.71	99.98	99.48	99.29	98.94	98.44	99.06
Si	10.466	10.572	10.308	10.549	10.475	10.173	10.327
Al	5.590	5.483	5.719	5.489	5.563	5.835	5.702
Ti	0.000	0.002	0.006	0.004	0.000	0.001	0.000
Fe ²	0.000	0.019	0.003	0.009	0.004	0.004	0.006
Mn	0.004	0.002	0.000	0.000	0.002	0.002	0.000
Mg	0.000	0.000	0.000	0.003	0.000	0.000	0.004
Sr	0.030	0.040	0.030	0.030	0.040	0.040	0.030
Ba	0.001	0.007	0.007	0.004	0.010	0.009	0.004
Ca	1.572	1.437	1.729	1.533	1.561	1.850	1.671
Na	2.060	2.150	1.950	2.034	2.039	1.917	2.043
К	0.069	0.077	0.086	0.115	0.125	0.062	0.097
Cátions	19.792	19.789	19.838	19.770	19.819	19.893	19.884
X	16.056	16.057	16.033	16.042	16.038	16.009	16.029
Z	3.736	3.732	3.805	3.728	3.781	3.884	3.855
Ab	55.70	58.70	51.80	55.20	54.70	50.10	53.60
Na	42.50	39.20	45.90	41.60	41.90	48.30	43.80
Or	1.90	2.10	2.30	3.10	3.40	1.60	2.50

AMOSTRAS	D-20	D-2 A	D-04				
	NORITO	JOTUNITO	JOTUNITO	JOTUNITO	JOTUNITO	JOTUNITO	NORITO
Análises	c5	c3	c3	c4	c4	c4	c1
Locação	1	<u>1</u>	2	1	2	3	1
Mineral	PI	PI	PI	PI	PI	PI	PI
SiO2	56.161	57.230	56.059	57.470	58.588	56.614	58.288
TiO2	0.045	0.014	0.068	0.090	0.000	0.000	0.000
Al2O3	27.654	26.522	27.732	26.719	26.086	26.507	26.679
FeO	0.057	0.134	0.026	0.094	0.018	0.049	0.040
MnO	0.021	0.000	0.013	0.013	0.000	0.000	0.017
MgO	0.002	0.016	0.000	0.022	0.002	0.006	0.008
SrO	0.279	0.407	0.285	0.331	0.307	0.410	0.347
BaO	0.027	0.066	0.170	0.031	0.077	0.053	0.000
CaO	9.688	8.799	9.767	8.728	7.892	8.897	8.384
Na2O	5.383	5.556	4.957	5.570	5.802	5.459	5.831
K2O	0.364	0.375	0.298	0.287	0.433	0.363	0.389
Total	99.68	99.12	99.37	99.36	99.21	98.36	99.98
Si	10.133	10.357	10.136	10.356	10.539	10.325	10.426
Al	5.876	5.652	5.905	5.670	5.526	5.693	5.620
Ti	0.006	0.002	0.009	0.012	0.000	0.000	0.000
Fe ²	0.009	0.020	0.004	0.014	0.003	0.007	0.006
Mn	0.003	0.000	0.002	0.002	0.000	0.000	0.003
Mg	0.001	0.004	0.000	0.006	0.001	0.002	0.002
Sr	0.030	0.040	0.030	0.030	0.030	0.040	0.040
Ba	0.002	0.005	0.012	0.002	0.005	0.004	0.000
Ca	1.873	1.706	1.892	4.685	1.521	1.738	1.607
Na	1.883	1.950	1.738	1.946	2.024	1.930	2.022
K	0.084	0.087	0.069	0.066	0.099	0.084	0.089
Cátions	19.900	19.823	19.797	19.789	19.748	19.823	19.815
X	16.015	16.011	16.050	16.038	16.065	16.018	16.046
Z	3.885	3.812	3.747	3.751	3.683	3.805	3.769
Ab	49.00	52.00	47.00	52.60	55.50	51.40	54.40
Na	48.80	45.60	51.10	45.60	41.70	46.30	43.20
Or	2.20	2.30	1.90	1.80	2.70	2.20	2.40

Tabela 5.1 – Química mineral dos plagioclásios do Complexo Pedra Aguda (continuação...)

AMOSTRAS	D – 04						
	NORITO						
Análises	c1	c2	c2	c2	c3	c3	c6
Locação	2	1	2	3	1	2	1
Mineral	PI						
SiO2	57.345	57.187	58.386	54.220	57.272	57.848	57.958
TiO2	0.000	0.051	0.000	0.001	0.026	0.061	0.000
Al2O3	26.813	26.430	26.360	28.613	27.071	26.466	26.603
FeO	0.028	0.038	0.051	0.251	0.082	0.032	0.057
MnO	0.000	0.000	0.034	0.000	0.026	0.001	0.000
MgO	0.000	0.017	0.000	0.165	0.018	0.000	0.000
SrO	0.295	0.335	0.331	0.326	0.306	0.325	0.295
BaO	0.081	0.113	0.063	0.032	0.000	0.135	0.044
CaO	8.910	8.658	8.128	11.115	9.126	8.393	8.337
Na2O	5.583	5.735	6.011	4.423	5.605	5.732	5.756
K2O	0.352	0.362	0.426	0.302	0.427	0.351	0.407
Total	99.41	98.93	99.79	99.45	99.96	99.34	99.46
Si	10.338	10.365	10.468	9.853	10.283	10.421	10.421
Al	5.692	5.642	5.566	6.124	5.724	5.615	5.633
Ti	0.000	0.007	0.000	0.000	0.004	0.008	0.000
Fe ²	0.004	0.006	0.008	0.038	0.012	0.050	0.009
Mn	0.000	0.000	0.005	0.000	0.004	0.000	0.000
Mg	0.000	0.005	0.000	0.045	0.005	0.000	0.000
Sr	0.030	0.040	0.030	0.030	0.030	0.030	0.030
Ва	0.006	0.008	0.004	0.002	0.000	0.010	0.003
Ca	1.721	1.681	1.561	2.164	1.756	1.620	1.606
Na	1.952	2.016	2.090	1.559	1.951	2.002	2.007
К	0.081	0.084	0.097	0.070	0.098	0.081	0.093
Cátions	19.824	19.854	19.829	19.885	19.867	19.792	19.802
X	16.030	16.014	16.034	15.977	16.011	16.044	16.054
Z	3.794	3.840	3.795	3.908	3.856	3.748	3.748
Ab	52.00	53.30	55.80	41.10	51.30	54.10	54.20
Na	45.80	44.50	41.60	57.10	46.40	43.70	43.30
Or	2.20	2.20	2.60	1.80	2.60	2.20	2.50

Tabela 5.1 – Química mineral dos plagioclásios do Complexo Pedra Aguda (continuação...)

5.3 – <u>PIROXÊNIOS</u>

Um total de 34 pontos foram analisados para piroxênio, sendo 18 de ortopiroxênios e 16 de clinopiroxênios, distribuídos nas amostras D-2A, D-04, D-13 e D-20. (Tabela 5.2).

A classificação para ambos os piroxênios foi efetuado de acordo com Morimoto (1988).

Os clinopiroxênios estudados são cristais prismáticos, fraturados e com pequenas inclusões, cristais arredondados e até zonados, associados ao plagioclásio e biotita (Figuras 5.11, 5.12 e 5.14). Os clinopiroxênios tanto dos jotunitos como dos noritos não mostram grande variação composional posicionando-se nos campos da salita e augita, com a maioria dos pontos no limite salita/augita (Figura 5.4A).

Os ortopiroxênios analisados são cristais anedrais, normalmente constituindo núcleos envolvidos por anfibólio, e cristais prismáticos, fraturados e por vezes contendo inclusões. Encontram-se em contato com anfibóio e plagioclásio e algumas vezes com biotita (Figuras 5.11 a 5.14).

Os ortopiroxênios mostram uma maior variação composicional que os clinopiroxênios (En_{63} - $_{87}$), com seus termos plotando no campo da bronzita e do hiperstênio, sem contudo haver uma passagem gradacional entre os dois tipos, ficando caracterizada desta forma uma lacuna composicional no intervalo (En_{70} - $_{85}$) (Figura 5.4B).

Da mesma forma que os plagioclásios, os ortopiroxênios quando analisados em cada amostra separadamente também mostram hiatos composicionais, principalmente com relação a CaO, FeO e MgO. Estes hiatos podem ser observados nos diagramas da figura 5.5 e 5.6.

A elaboração das fórmulas estruturais tanto para os clinopiroxênios como para os ortopiroxênios seguiu a metodologia de Cawthorn e Collerson (1974), normalizados para 6 oxigênios e 4 cátions. A relação estrutural obtida para ambos foi respectivamente : $[T]Si_{(1.954-1.977)}$ $[T]Al_{(0.023-0.046)}$ $[T]Fe^{3+}_{(0.000-0.014)}$ $[M1]Al_{(0.000-0.022)}$ $[M1]Ti_{(0.003-0.009)}$ $[M1]Fe^{3+}_{(0.011-0.051)}$ $[M1]Fe^{2+}_{(0.073-0.159)}$ $[M1]Cr_{(0.002-0.006)}$ $[M1]Mg_{(0.801-0.866)}$ $[M2]Fe^{2+}_{(0.054-0.127)}$ $[M2]Mn_{(0.004-0.007)}$ $[M2]Ca_{(0.850-0.918)}$ $[M2]Na_{(0.014-0.023)}$

 $[M2]K_{(0.000-0.001)} O_6 e [T]Si_{(1.951-1.980)} [T]Al_{(0.020-0.049)} [T]Fe^{3+}_{(0.000-0.019)} [M1]Al_{(0.000-0.027)} \\ [M1]Ti_{(0.001-0.006)} [M1]Fe^{3+}_{(0.000-0.039)} [M1]Cr_{(0.000-0.014)} [M1]Mg_{(0.949-0.983)} [M2]Mg_{(0.271-0.737)} \\ [M2]Fe^{2+}_{(0.217-0.678)} [M2]Mn_{(0.003-0.016)} [M2]Ca_{(0.018-0.072)} \\ [M2]Na_{(0.000-0.006)} \\ [M2]K_{(0.000-0.002)} O_6. \\ \label{eq:main_start_st$

Figura 5.4 – Classificação dos piroxênios (Morimoto, 1988) . (◊ para jotunitos e o para noritos). A – Clinopiroxênio e B - Ortopiroxênio

Figura 5.5 – Diagramas MgO x FeO e CaO x FeO para os ortopiroxênios das diferentes amostras de jotunitos (D-2A e D-13).

Figura 5.6 – Diagramas MgO x FeO e CaO x FeO para os ortopiroxênios das diferentes amostras de noritos (D-04 e D-20).

AMOSTRAS	D-13 ЈОТИNIТО	D-13 JOTUNITO	D-13 ЈОТUNITO	D-13 JOTUNITO	D-13 JOTUNITO	D-20 NORITO	D-20 NORITO
Análises	c3	c3	c4	c4	c4	c1	c1
Locação	1	2	1	2	3	1	2
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх
SiO2	53.479	53.006	53.436	53.773	53.438	56.736	57.011
TiO2	0.122	0.151	0.184	0.107	0.051	0.076	0.036
Al2O3	0.545	0.669	0.599	0.755	0.756	1.080	0.899
FeO	22.131	22.025	21.469	21.062	21.386	10.093	8.168
Cr2O3	0.052	0.112	0.013	0.133	0.122	0.167	0.157
MnO	0.447	0.478	0.512	0.365	0.414	0.197	0.145
MgO	23.054	23.578	23.636	24.732	23.520	32.150	32.949
CaO	0.459	0.470	0.962	0.575	0.544	1.136	0.971
Na2O	0.009	0.009	0.003	0.000	0.026	0.016	0.095
K2O	0.000	0.000	0.006	0.001	0.004	0.012	0.047
Total	100.30	100.50	100.82	101.50	100.26	101.66	100.48
TSi	1.980	1.954	1.962	1.951	1.972	1.956	1.973
TAI	0.020	0.029	0.026	0.032	0.028	0.044	0.027
TFe ³	0.000	0.017	0.012	0.017	0.000	0.000	0.000
M1Al	0.004	0.000	0.000	0.000	0.005	0.000	0.010
M1Ti	0.003	0.004	0.005	0.003	0.001	0.002	0.001
M1Fe ³	0.008	0.035	0.028	0.039	0.019	0.036	0.019
M1Fe ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1Cr	0.002	0.003	0.000	0.004	0.004	0.005	0.004
M1Mg	0.983	0.958	0.966	0.954	0.971	0.957	0.966
M1Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M2Mg	0.289	0.338	0.327	0.384	0.322	0.696	0.734
M2Fe ²	0.678	0.628	0.619	0.583	0.641	0.255	0.217
M2Mn	0.014	0.015	0.016	0.011	0.013	0.006	0.004
M2Ca	0.018	0.019	0.038	0.022	0.022	0.042	0.036
M2Na	0.001	0.001	0.000	0.000	0.002	0.001	0.006
M2K	0.000	0.000	0.000	0.000	0.000	0.001	0.002
Sum-cat	4.000	4.000	4.000	4.000	4.000	3.999	3.998
Ca	0.919	0.949	1.952	1.144	1.092	2.146	1.840
Mg	64.194	66.211	65.800	68.462	65.700	84.523	86.855
Fe ² _Mn	34.887	32.841	32.275	30.394	33.208	13.331	11.305
JD1	0.033	0.000	0.000	0.000	0.104	0.017	0.431
AE1	0.000	0.033	0.025	0.002	0.000	0.065	0.000
CFTS1	0.470	0.893	1.438	2.199	1.146	2.021	1.207
CTTS1	0.173	0.213	0.261	0.148	0.072	0.101	0.048
CATS1	0.178	0.000	0.000	0.000	0.137	0.000	0.064
WO1	0.105	0.000	0.000	0.000	0.000	0.029	0.517
EN1	64.630	65.922	66.321	68.022	65.894	84.703	86.669
FS1	34.412	31.939	31.714	29.628	32.647	13.065	11.064
Q	1.969	1.942	1.950	1.943	1.956	1.950	1.953
J	0.001	0.001	0.000	0.000	0.004	0.002	0.013
WU	0.915	0.924	1.886	1.112	1.082	2.107	1.822
EN	63.945	64.521	64.470	66.541	65.074	82.988	86.003
rs wee	35.140	34.554	33.644	32.347	33.844	14.904	12.175
WEF	99.935	99.934	99.979	100.000	99.811	99.891	99.353
JR	0.023	0.000	0.000	0.000	0.038	0.001	0.216
AE	0.042	0.066	0.022	0.000	0.151	0.108	0.431

Tabela 5.2 – Química mineral dos piroxênios do Complexo Pedra Aguda

Tabela 5.2 – Química mineral dos piroxênios do Complexo Pedra Aguda (continuação...)

AMOSTRAS	D-20 NORITO	D-20 NORITO	D-20 NORITO	D-20 NORITO	D-20 NORITO	D-20 NORITO	D-2 A JOTUNITO
Análises	c1	c2	c4	c5	c5	c5	c1
Locação	3	1	1	1	2	3	1
Mineral	Орх	Срх	Орх	Срх	Срх	Срх	Срх
SiO2	56.872	52.732	53.100	53.342	53.227	52.851	53.430
TiO2	0.048	0.270	0.097	0.232	0.161	0.326	0.172
Al2O3	1.012	0.946	0.819	0.876	0.957	1.055	0.788
FeO	8.991	9.380	22.111	8.691	8.770	8.851	7.322
Cr2O3	0.162	0.107	0.092	0.100	0.156	0.085	0.053
MnO	0.155	0.190	0.416	0.210	0.182	0.169	0.210
MgO	33.046	14.641	23.213	14.771	14.669	14.556	15.586
CaO	0.635	21.780	0.531	22.406	22.258	22.031	22.546
Na2O	0.004	0.264	0.000	0.240	0.299	0.284	0.245
K2O	0.016	0.020	0.000	0.011	0.000	0.000	0.004
Total	100.94	100.33	100.38	100.88	100.68	100.21	100.36
75.G *	4 00 4	4.050	4 000	4 005	4 00 1	4 004	4 000
151	1.964	1.956	1.963	1.965	1.964	1.961	1.966
	0.036	0.041	0.036	0.035	0.036	0.039	0.034
TFe ⁻	0.000	0.003	0.002	0.000	0.000	0.000	0.000
MIAI M1T:	0.005	0.000	0.000	0.003	0.006	0.007	0.000
	0.001	0.006	0.003	0.006	0.004	0.009	0.005
MIFe MIEc ²	0.026	0.040	0.029	0.034	0.037	0.032	0.040
MIFe MICr	0.000	0.134	0.000	0.143	0.141	0.140	0.096
MICr M1Mg	0.004	0.003	0.003	0.003	0.005	0.002	0.002
M1Ng M1Ni	0.904	0.010	0.905	0.011	0.007	0.000	0.000
Μ2Μα	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M2Fe ²	0.734	0.000	0.514	0.000	0.000	0.000	0.000
M2Mn	0.005	0.006	0.002	0.007	0.006	0.005	0.007
M2Ca	0.023	0.866	0.021	0.884	0.880	0.876	0.889
M2Na	0.000	0.019	0.000	0.017	0.021	0.020	0.017
M2K	0.001	0.001	0.000	0.001	0.000	0.000	0.000
Sum-cat	3.999	3.999	4.000	3.999	4.000	4.000	4.000
Ca	1.197	44.994	1.070	45.673	45.692	45.394	45.923
Mg	86.647	42.084	65.077	41.894	41.899	41.731	44.172
Fe ² _Mn	12.156	12.922	33.853	12.432	12.409	12.874	9.905
JD1	0.049	0.000	0.000	0.159	0.309	0.363	0.013
AE1	0.000	1.029	0.000	0.748	0.792	0.687	0.894
CFTS1	1.519	1.488	1.626	1.126	1.365	1.064	1.246
CTTS1	0.063	0.389	0.137	0.330	0.230	0.468	0.245
CATS1	0.193	0.000	0.000	0.000	0.000	0.000	0.000
WO1	0.000	42.793	0.000	43.957	43.727	43.510	44.170
EN1	86.298	41.781	65.056	41.655	41.560	41.407	43.919
FS1	11.877	12.521	33.180	12.025	12.015	12.501	9.513
Q	1.959	1.918	1.952	1.930	1.921	1.924	1.929
J	0.001	0.038	0.000	0.034	0.043	0.041	0.035
WU	1.181	43.891	1.053	44.895	44.823	44.664	44.990
EN ES	85.536	41.052	04.063	41.180	41.102	41.059	43.274
rð Wee	13.283	15.057	34.884	13.925	14.075	14.277	11.736
VV EF TD	39.973	90.004	0.000	90.200	91.021	91.920	90.220
JD AF	0.004	1.000	0.000	0.147	1 070	1 605	1 760
AL	0.023	1.930	0.000	1.593	1.072	1.090	1.703

Tabela 5.2 – Química mineral dos piroxênios do Complexo Pedra Aguda (continuação...)

AMOSTRAS	D-2 A JOTUNITO	D-2 A JOTUNITO	D-04 NORITO				
Análises	c1	c2	c2	с3	c3	c3	c1
Locação	2	1	2	1	2	4	1
Mineral	Срх	Орх	Орх	Орх	Орх	Орх	Срх
SiO2	53.246	56.809	52.865	56.641	53.239	53.324	53.280
TiO2	0.322	0.070	0.141	0.047	0.096	0.159	0.204
Al2O3	1.283	1.575	0.661	1.414	0.774	0.723	1.153
FeO	7.643	7.856	20.857	8.787	21.306	20.908	7.249
Cr2O3	0.150	0.515	0.029	0.395	0.075	0.053	0.205
MnO	0.219	0.095	0.474	0.194	0.407	0.412	0.194
MgO	15.026	32.561	23.652	32.682	23.417	23.444	14.716
CaO	22.116	1.304	0.572	1.090	0.542	0.615	23.267
Na2O	0.284	0.027	0.012	0.031	0.006	0.000	0.290
K2O	0.015	0.016	0.009	0.021	0.021	0.014	0.022
Total	100.30	100.83	99.27	101.30	99.88	99.65	100.58
TSi	1.966	1.963	1.967	1.951	1.972	1.979	1.962
TAI	0.034	0.037	0.029	0.049	0.028	0.021	0.038
TFe ³	0.000	0.000	0.004	0.000	0.000	0.000	0.000
M1Al	0.021	0.027	0.000	0.008	0.006	0.010	0.012
M1Ti	0.009	0.002	0.004	0.001	0.003	0.004	0.006
M1Fe ³	0.012	0.000	0.026	0.031	0.015	0.001	0.031
M1Fe ²	0.127	0.000	0.000	0.000	0.000	0.000	0.138
M1Cr	0.004	0.014	0.001	0.011	0.002	0.002	0.006
M1Mg	0.827	0.957	0.969	0.949	0.974	0.983	0.808
M1Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M2Mg	0.000	0.719	0.342	0.729	0.320	0.314	0.000
M2Fe ²	0.097	0.227	0.619	0.222	0.645	0.648	0.054
M2Mn	0.007	0.003	0.015	0.006	0.013	0.013	0.006
M2Ca	0.875	0.048	0.023	0.040	0.022	0.024	0.918
M2Na	0.020	0.002	0.001	0.002	0.000	0.000	0.021
M2K	0.001	0.001	0.000	0.001	0.001	0.001	0.001
Sum-cat	3.999	3.999	4.000	3.999	3.999	3.999	3.999
Ca	45.261	2.469	1.158	2.067	1.091	1.234	47.704
Mg	42.787	85.779	66.649	86.220	65.573	65.436	41.981
Fe ² _Mn	11.952	11.752	32.193	11./14	33.336	33.331	10.315
JD1	1.080	0.129	0.000	0.153	0.072	0.034	0.606
AEI	0.000	0.000	0.066	0.000	0.000	0.000	0.515
CFTSI	0.831	0.719	1.295	2.128	0.896	0.140	1.380
	0.459	0.093	0.201	0.062	0.136	0.225	0.291
CATSI	0.013	1.235	0.000	0.261	0.237	0.488	0.000
WOI	43.628	0.422	0.000	0.000	0.000	0.389	45.647
ENI ESI	42.475	85.790	66.890	86.001	65.838	65.844	41.642
FSI	11.514	11.612	31.548	11.394	32.821	32.881	9.919
Q	1.926	1.952	1.953	1.941	1.959	1.969	1.918
J	0.041	0.004	0.002	0.004	0.001	0.000	0.041
WO	44.986	2.469	1.141	2.035	1.082	1.233	46.953
EN	42.527	85.779	65.640	84.877	65.065	65.396	41.320
FS	12.487	11.752	33.219	13.088	33.853	33.371	11./28
WEF	97.940	99.815	99.912	99.788	99.956	100.000	97.893
1R	1.325	0.185	0.000	0.004	0.012	0.000	0.582
AE	0.735	0.000	0.088	0.168	0.031	0.000	1.525

Tabela 5.2 – Química mineral dos piroxênios do Complexo Pedra Aguda (continuação...)

AMOSTRAS	D-04 NORITO						
Análises	c1	c1	c3	c3	c3	c4	c4
Locação	2	3	1	2	3	1	2
Mineral	Срх	Срх	Орх	Орх	Орх	Срх	Срх
SiO2	52.924	52.787	52.702	53.397	52.791	53.321	53.028
TiO2	0.193	0.134	0.173	0.156	0.131	0.112	0.125
Al2O3	0.711	0.777	0.677	0.631	0.739	0.686	0.726
FeO	8.600	9.194	22.284	21.828	21.390	8.446	8.350
Cr2O3	0.053	0.089	0.090	0.029	0.070	0.063	0.079
MnO	0.159	0.210	0.439	0.379	0.381	0.194	0.183
MgO	14.791	15.236	23.041	22.939	22.836	15.082	14.811
CaO	22.921	21.380	0.898	1.567	1.065	22.921	22.921
Na2O	0.193	0.232	0.000	0.028	0.014	0.231	0.245
K2O	0.000	0.000	0.000	0.000	0.000	0.000	0.016
Total	100.55	100.04	100.30	100.95	99.42	100.18	100.46
TSi	1.955	1.959	1.952	1.963	1.969	1.974	1.959
TAI	0.031	0.034	0.030	0.027	0.031	0.026	0.032
TFe ³	0.014	0.008	0.019	0.001	0.000	0.000	0.010
M1Al	0.000	0.000	0.000	0.000	0.002	0.004	0.000
M1Ti	0.005	0.004	0.005	0.004	0.004	0.003	0.003
M1Fe ³	0.046	0.048	0.036	0.029	0.021	0.030	0.050
M1Fe ²	0.132	0.103	0.000	0.000	0.000	0.128	0.128
M1Cr	0.002	0.003	0.003	0.001	0.002	0.002	0.002
M1Mg	0.815	0.843	0.956	0.966	0.972	0.832	0.816
M1Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M2Mg	0.000	0.000	0.315	0.292	0.298	0.000	0.000
M2Fe ²	0.074	0.127	0.635	0.633	0.646	0.103	0.070
M2Mn	0.005	0.007	0.014	0.012	0.012	0.006	0.006
M2Ca	0.907	0.850	0.036	0.062	0.043	0.874	0.906
M2Na	0.014	0.017	0.000	0.002	0.001	0.017	0.018
M2K	0.000	0.000	0.000	0.000	0.000	0.000	0.001
Sum-cat	4.000	4.000	4.000	4.000	4.000	4.000	3.999
Ca	46.935	44.060	1.821	3.144	2.160	44.969	47.055
Mg	42.142	43.687	65.012	64.029	64.429	42.816	42.352
Fe ² _Mn	10.923	12.253	33.167	32.827	33.411	12.214	10.593
JD1	0.000	0.000	0.000	0.000	0.052	0.210	0.000
AE1	0.712	0.861	0.000	0.102	0.000	0.639	0.944
CFTS1	1.735	1.748	1.983	1.428	1.166	1.735	1.735
CTTS1	0.276	0.193	0.247	0.221	0.188	0.160	0.179
CATS1	0.000	0.000	0.000	0.000	0.029	0.000	0.000
WO1	44.711	41.889	0.000	1.510	0.789	43.571	44.811
EN1	41.950	43.460	65.208	64.351	64.792	42.587	42.077
FS1	10.617	11.849	32.561	32.388	32.985	11.837	10.229
Q	1.928	1.922	1.943	1.952	1.959	1.938	1.920
J	0.028	0.033	0.000	0.004	0.002	0.033	0.035
WO	45.533	42.827	1.771	3.083	2.137	44.283	45.640
EN	40.883	42.465	63.236	62.802	63.757	42.163	41.079
FS	13.585	14.708	34.993	34.114	34.106	13.554	13.280
WEF	98.590	98.299	100.000	99.797	99.897	98.323	98.210
JB	0.000	0.000	0.000	0.000	0.007	0.201	0.000
AE	1.410	1.701	0.000	0.203	0.095	1.477	1.790

AMOSTRAS	D-04 NORITO	D-04 NORITO	D-04 NORITO	D-04 NORITO	D-04 NORITO	D-04 NORITO
Análises	c4	c4	c4	c5	c5	c6
Locação	3	4	5	1	2	1
Mineral	Срх	Срх	Срх	Срх	Срх	Орх
SiO2	53.244	53.340	53.433	53.502	53.609	52.629
TiO2	0.191	0.169	0.215	0.180	0.198	0.201
Al2O3	0.736	0.747	1.023	1.267	1.075	0.769
FeO	8.990	8.223	7.686	6.551	6.108	21.878
Cr2O3	0.059	0.114	0.059	0.081	0.155	0.049
MnO	0.221	0.213	0.215	0.165	0.145	0.423
MgO	14.754	14.977	14.527	15.242	15.928	22.206
CaO	21.809	22.022	22.741	23.029	23.365	1.814
Na2O	0.217	0.251	0.311	0.322	0.294	0.039
K2O	0.000	0.001	0.019	0.000	0.007	0.010
Total	100.22	100.06	100.23	100.34	100.88	100.02
TSi	1.976	1.977	1.977	1.966	1.954	1.958
TAI	0.024	0.023	0.023	0.034	0.046	0.034
TFe ³	0.000	0.000	0.000	0.000	0.000	0.008
M1Al	0.008	0.01	0.022	0.021	0.000	0.000
M1Ti	0.005	0.005	0.006	0.005	0.005	0.006
M1Fe ³	0.019	0.018	0.011	0.023	0.051	0.032
M1Fe ²	0.149	0.136	0.159	0.113	0.073	0.000
M1Cr	0.002	0.003	0.002	0.002	0.004	0.001
M1Mg	0.816	0.828	0.801	0.835	0.866	0.960
M1Ni	0.000	0.000	0.000	0.000	0.000	0.000
M2Mg	0.000	0.000	0.000	0.000	0.000	0.271
M2Fe ²	0.110	0.101	0.069	0.065	0.062	0.640
M2Mn	0.007	0.007	0.007	0.005	0.004	0.013
M2Ca	0.867	0.875	0.902	0.907	0.913	0.072
M2Na	0.016	0.018	0.022	0.023	0.021	0.003
M2K	0.000	0.000	0.001	0.000	0.000	0.000
Sum-cat	4.000	4.000	3.999	4.000	4.000	4.000
Ca	44.467	44.948	46.548	47.093	47.589	3.695
Mg	41.856	42.533	41.373	43.369	45.139	62.928
Fe ² _Mn	13.677	12.519	12.078	9.538	7.272	33.378
JD1	0.410	0.507	1.109	1.093	0.014	0.000
AE1	0.387	0.417	0.080	0.088	1.077	0.169
CFTS1	0.683	0.672	0.554	1.208	1.803	1.573
CTTS1	0.272	0.241	0.306	0.256	0.281	0.289
CATS1	0.000	0.000	0.000	0.000	0.000	0.000
WO1	43.315	43.773	45.296	45.198	45.097	1.851
EN1	41.671	42.285	41.024	42.971	44.751	63.252
FS1	13.262	12.105	11.631	9.186	6.978	32.865
Q	1.943	1.939	1.930	1.921	1.913	1.944
J	0.031	0.036	0.045	0.046	0.042	0.006
WO	44.032	44.536	46.294	46.542	46.351	3.619
EN	41.447	42.143	41.147	42.861	43.964	61.643
FS	14.520	13.321	12.559	10.598	9.685	34.737
WEF	98.424	98.179	97.748	97.672	97.879	99.713
JB	0.464	0.647	1.510	1.122	0.011	0.000
AE	1.112	1.174	0.742	1.206	2.110	0.287

Tabela 5.2 – Química mineral dos piroxênios do Complexo Pedra Aguda (continuação...)

5.4 - ANFIBÓLIOS

Os anfibólios foram analisados nas amostras D-2A, D-13 e D-20, perfazendo um total de 9 pontos (Tabela 5.3). São cristais anedrais, fortemente pleocróicos, formados às expensas do piroxênio. Ocorrem em contato com piroxênio, biotita e plagioclásio (Figuras 5.11, 5.12 a 5.14).

Na classificação proposta por Hawthorne (1981), baseada na relação BCa+BNa x BNa, todas as amostras analisadas plotam no campo dos anfibólios cálcicos (Figura 5.7 A). Dentro deste grupo principal (cálcicos) e considerando-se a relação TSi x Mg/(Mg+Fe ²⁺) com ANa+AK<0.50 e Ti<0.50, os anfibólios de ambos, jotunitos e noritos não apresnetam grandes variações composicionais, sendo classificados como hornblenda magnesiana (Fiura.5.7 B).

Figura 5.7 – Classificação dos anfibólios (Hawthorne, 1981) A – classificação baseada na relação BCa+BNa x BNa e B – classificação dos anfibólios cálcicos baseada na relação TSi x Mg / (Mg+Fe²⁺) (◊para jotunitos e o para noritos).

O procedimento para a formulação dos anfibólios seguiu o método de Robinson et. al. (1981) estabelecido para a média de (15 - NK e 13 CNK) e na base de 23 oxigênios.

 $\begin{array}{l} A \ relação \ estrutural \ obtida \ para \ a \ hornblenda \ \acute{e} \ a \ seguinte: \ [T]Si_{(6.850-7.157)} \\ [T]Al_{(0.843-1.150)} \ \ [C]Al_{(0.287-0.403)} \ \ [C]Fe^{3+}_{(0.213-0.340)} \ \ [C]Ti_{(0.142-0.213)} \ \ [C]Mg_{(3.161-3.465)} \\ [C]Fe^{2+}_{(0.773-1.017)} \ \ [C]Mn_{(0.007-0.010)} \ [B]Fe^{2+}_{(0.073-0.125)} \ \ [B]Mn_{(0.006-0.010)} \ \ [B]Ca_{(1.714-1.826)} \\ [B]Na_{(0.093-0.132)} \ [A]Na_{(0.131-0.198)} \ \ [A]K_{(0.099-0.144)} \ O_{22} \ (OH)_{2.} \end{array}$

AMOSTRAS	D-13 JOTUNITO	D-13 ЈОТИМІТО	D-13 JOTUNITO	D-20 NORITO	D-20 NORITO
Análises	c3	с3	с3	c4	c4
Locação	1	2	3	1	2
Mineral	Anf	Anf	Anf	Anf	Anf
SiO2	49.193	49.091	50.174	47.442	47.974
TiO2	1.769	1.621	1.328	1.958	1.814
Al2O3	7.349	7.199	6.727	8.674	8.887
FeO	10.265	9.821	10.373	11.112	10.863
MnO	0.136	0.166	0.149	0.121	0.132
MgO	15.982	16.193	16.221	14.881	14.745
Cao	11.512	11.578	11.218	11.549	11.850
Na2O	1.041	1.087	0.953	1.002	0.803
K2O	0.643	0.583	0.543	0.748	0.671
F	0.000	0.211	0.113	0.024	.0.000
Cl	0.048	0.043	0.031	0.038	0.032
Total	97.94	97.59	97.83	97.55	97.77
O_F_Cl	0.010	0.100	0.050	0.020	0.010
O_F	0.000	0.090	0.050	0.010	0.000
O_Cl	0.010	0.010	0.010	0.010	0.010
Ctotal	97.930	97.490	97.780	97.530	97.760
TSi	7.033	7.047	7.157	6.851	6.898
TAI	0.967	0.953	0.843	1.149	1.102
Sum_T	8.000	8.000	8.000	8.000	8.000
CAI	0.270	0.263	0.287	0.326	0.403
CFe ³	0.275	0.262	0.340	0.277	0.216
CTi	0.190	0.175	0.142	0.213	0.196
CMg	3.406	3.465	3.449	3.204	3.161
CFe ²	0.850	0.825	0.773	0.973	1.017
CMn	0.008	0.010	0.009	0.007	0.008
Sum_C	5.000	5.000	5.000	5.000	5.000
BFe ²	0.103	0.093	0.125	0.092	0.073
BMn	0.008	0.010	0.009	0.007	0.008
BCa	1.763	1.781	1.714	1.787	1.826
BNa	0.126	0.117	0.130	0.113	0.093
Sum_B	2.000	2.000	1.979	2.000	2.000
ANa	0.163	0.186	0.133	0.167	0.131
AK	0.117	0.107	0.099	0.138	0.123
Sum_A	0.280	0.293	0.232	0.305	0.254
Sum_cat	15.280	15.293	15.211	15.305	15.254
CCI	0.012	0.010	0.007	0.009	0.008
CF ~	0.000	0.096	0.051	0.011	0.000
Sum_oxy	23.056	23.049	23.064	23.035	23.035

Tabela 5.3 – Química mineral dos anfibólios do Complexo Pedra Aguda
AMOSTRAS	D-20 NORITO	D-2 A JOTUNITO	D-2 A JOTUNITO	D-2 A JOTUNITO
Análises	c4	c3	c3	c3
Locação	3	1	2	3
Mineral	Anf	Anf	Anf	Anf
SiO2	47.370	48.560	48.774	48.237
TiO2	1.866	1.637	1.408	1.549
Al2O3	8.921	8.311	7.842	8.398
FeO	10.260	9.445	9.649	9.669
MnO	0.132	0.132	0.146	0.105
MgO	15.117	15.862	15.837	15.579
Cao	11.701	11.532	11.325	11.800
Na2O	1.017	1.140	1.046	0.847
K2O	0.782	0.690	0.664	0.732
F	0.095	0.134	0.238	0.155
Cl	0.031	0.034	0.032	0.051
Total	97.29	97.48	96.96	97.12
O_F_Cl	0.050	0.060	0.110	0.080
O_F	0.040	0.060	0.100	0.070
O_Cl	0.010	0.010	0.010	0.010
Ctotal	97.240	97.420	96.850	97.040
TSi	6.850	6.975	7.040	6.958
TAI	1.150	1.025	0.960	1.042
Sum_T	8.000	8.000	8.000	8.000
CAI	0.369	0.381	0.373	0.385
CFe '	0.226	0.227	0.269	0.213
СТі	0.203	0.177	0.153	0.168
CMg	3.259	3.397	3.408	3.350
CFe ²	0.935	0.810	0.789	0.878
CMn	0.008	0.008	0.009	0.006
Sum_C	5.000	5.000	5.000	5.000
BFe ²	0.079	0.097	0.108	0.076
BMn	0.008	0.008	0.009	0.006
BCa	1.813	1.775	1.751	1.824
BNa G D	0.100	0.120	0.132	0.094
Sum_B	2.000	2.000	2.000	2.000
AINA	0.186	0.198	0.161	0.143
AIX Sum A	0.144	0.120	0.122	0.135
Sum_A	0.330	0.324	0.283	0.278
	15.330	15.324	15.283	15.278
	0.008	0.008	0.008	0.012
	0.043	0.061	0.109	0.071
sum_oxy	23.040	23.071	23.069	23.038

Tabela 5.3 – Química mineral dos anfibólios do Complexo Pedra Aguda (continuação...)

5. 5 – <u>BIOTITAS</u>

Foram analisados para a biotita um total de 12 pontos, distribuídos nas amostras D-2A, D-04, D-13 e D-20. Os resultados analíticos estão mostrados na tabela 5.4.

As biotitas selecionadas variam de anedrais a subedrais, pleocróicas. Alguns cristais mostram seus planos de clivagem preenchidos por minerais opacos. As biotitas estão em contato com anfibólio, plagioclásio e piroxênio (Figuras 5.11 a 5.14).

Dentro dos extremos da solução sólida anita – flogopita – eastonita – siderofilita, classificação proposta por Deer et al. (1972), as biotitas dos jotunitos e noritos, mostram maior proximidade a flogopita (Figura 5.8), com a razão Fe/ (Fe+ Mg) variando de 0,29 a 0,30 para os jotunitos e um pouco mais elevadas para os noritos, ou seja 0,33 a 0,37 sugerindo um enriquecimento em ferro ligeiramente maior destas últimas (Figura 5.8).

Figura 5.8 – Classificação das biotitas de acordo com os membros finais da solução sólida anita – flogopita – eastonita – siderofilita (Deer et al, 1972) (A para jotunitos e B para os noritos).

O teor de SiO₂ das biotitas varia de 37,254 a 38,374% para os jotunitos e de 36,481 a 37,304% para os noritos, enquanto Al_2O_3 é praticamente constante para os dois tipos petrográficos, situando-se no intervalo de 15,248 a 15,888%, com apenas um ponto da amostra D-2A (jotunito) com valor de 14,422 %, denotando um hiato composicional (Figuras 5.9 e 5.10).

São biotitas ricas em TiO₂, cujos valores variam de 3,468 a 4,344 % para os jotunitos e de 4,905 a 5,863% para os noritos e mostram saltos composicionais com relação a TiO₂ quando analisadas nos dois tipos separadamente (Figuras 5.9 e 5.10).

Os diagramas das figuras 5.9 e 5.10 mostram lacunas composicionais também para FeO, MgO e F nas biotitas, tanto dos jotunitos como dos noritos.

O cálculo estrutural foi efetuado pelo método de Deer et. al. (1972), tendo como base 24 oxigênios. A fórmula estrutural obtida é a seguinte: $Si_{(5.629-5.783)} Al_{(2.107-2.371)}^{i}$

 $Ti_{(0.401-0.682)} \ Fe^{2+}{}_{(1.473-1.896)} \ Cr_{(0.019-0.048)} \ Mn_{(0.001-0.012)} \ Mg_{(3.252-3.906)} \ Ba_{(0.044-0.072)} \\ C_{a(0.000-0.011)} \ Na_{(0.000-0.058)} \ K_{(1.725-1.913)} \ O_{20} \ (OH)_{4.}$

Figura 5.9 – Diagramas MgO x FeO, TiO_2 x FeO, Al_2O_3 x SiO_2 e F x SiO_2 para as biotitas dos jotunitos.

Figura 5.10 – Diagramas MgO x FeO, TiO₂ x FeO, Al₂O₃ x SiO₂ e F x SiO₂ para as biotitas dos noritos

AMOSTRAS	D-13 JOTUNITO	D-13 JOTUNITO	D-20 NORITO	D-20 NORITO	D-20 NORITO	D-20 NORITO
Análises	c1	c1	c2	c2	c5	c5
Locação	1	2	1	2	1	2
Mineral	Bio	Bio	Bio	Bio	Bio	Bio
SiO2	37.254	37.932	36.481	36.695	37.054	36.593
TiO2	4.252	4.130	5.513	5.345	5.360	4.905
Al2O3	15.258	15.382	15.590	15.430	15.613	15.660
Cr2O3	0.224	0.215	0.243	0.198	0.186	0.395
FeO	12.962	12.614	14.007	13.957	13.595	14.617
MnO	0.058	0.040	0.047	0.004	0.029	0.016
MgO	15.636	16.221	14.480	14.598	14.492	14.064
BaO	0.770	0.865	1.186	1.051	0.934	0.952
CaO	0.011	0.014	.0.000	0.000	0.009	0.066
Na2O	0.134	0.075	0.001	0.036	0.026	0.192
K2O	9.194	9.653	9.650	9.517	9.536	8.959
Cl	0.084	0.082	0.078	0.065	0.086	0.080
F	0.101	0.202	0.140	0.185	0.121	0.389
Total	95.94	97.34	97.34	97.02	96.96	96.81
O-F-Cl	0.060	0.100	0.080	0.090	0.070	0.180
Ctotal	95.88	97.33	97.34	96.99	96.97	96.71
Si	5.764	5.782	5.629	5.668	5.701	5.676
Al ^{IV}	2.236	2.218	2.371	2.332	2.299	2.324
Al ^{VI}	0.544	0.543	0.462	0.475	0.530	0.537
Ti	0.495	0.474	0.640	0.621	0.620	0.572
Fe ²	1.677	1.608	1.807	1.803	1.749	1.896
Cr	0.027	0.026	0.030	0.024	0.023	0.048
Mn	0.008	0.005	0.006	0.001	0.004	0.002
Mg	3.606	3.686	3.331	3.361	3.324	3.252
Ba	0.047	0.052	0.072	0.064	0.056	0.058
Ca	0.002	0.002	0.000	0.000	0.001	0.011
Na	0.040	0.022	0.000	0.011	0.008	0.058
К	1.815	1.877	1.899	1.875	1.872	1.773
Cátions	16.261	16.295	16.247	16.235	16.187	16.207
CF	0.099	0.195	0.137	0.181	0.118	0.382
CCI	0.044	0.042	0.041	0.034	0.045	0.042
0	24.000	24.000	24.000	24.000	24.000	24.000
Fe_FeMg	0.320	0.320	0.350	0.350	0.340	0.370
Mg_FeMg	0.680	0.700	0.650	0.650	0.660	0.630

Tabela 5.4 - Química mineral das biotitas do Complexo Pedra Aguda

AMOSTRAS	D-2 A JOTUNITO	D-2 A JOTUNITO	D-2 A JOTUNITO	D-2 A JOTUNITO	D-04 NORITO	D-04 NORITO
Análises	c1	c3	c3	c3	C6	c6
Locação	1	1	2	3	1	2
Mineral	Bio	Bio	Bio	Bio	Bio	Bio
SiO2	37.670	37.722	38.374	37.448	37.304	36.570
TiO2	4.344	4.167	3.468	3.948	5.653	5.863
Al2O3	15.608	15.888	14.422	15.540	15.446	15.248
Cr2O3	0.181	0.165	0.178	0.203	0.160	0.177
FeO	11.762	11.904	12.564	11.403	13.395	13.040
MnO	0.043	0.019	0.090	0.029	0.054	0.027
MgO	16.209	16.450	17.062	16.282	14.685	14.868
BaO	0.740	0.937	0.911	0.948	1.109	1.069
CaO	0.000	0.000	0.036	0.000	0.000	0.000
Na2O	0.072	0.054	0.065	0.075	0.050	0.026
K2O	9.803	9.565	8.807	9.556	9.679	9.474
Cl	0.069	0.081	0.080	0.059	0.069	0.069
F	0.130	0.459	0.226	0.428	0.194	0.323
Total	96.56	97.33	96.20	95.86	97.73	96.68
	0.070	0.210	0.110	0 100	0 100	0 150
U-F-Cl Ctotol	0.070	0.210	0.110	0.190	0.100	0.100
	90.00	97.20	5 90.17	90.73	97.70	90.00
	2.703	2.745	2 107	2 217	2 206	2 244
	2.237	2.200	2.107	2.217	2.290	2.344
AI T:	0.575	0.090	0.001	0.009	0.400	0.433
Fo ²	1 505	1 516	1 61/	1 /73	1 713	1 687
re Cr	0.022	0.020	0.022	0.025	0.019	0.022
Mn	0.022	0.020	0.022	0.023	0.013	0.022
Mg	3 697	3 735	3 906	3 749	3 348	3 428
Ba	0.044	0.056	0.055	0.057	0.066	0.065
Ca	0.000	0.000	0.006	0.000	0.000	0.000
Na	0.021	0.016	0.019	0.022	0.015	0.008
K	1.913	1.858	1.725	1.883	1.888	1.869
 Cátions	16.283	16.275	16.261	16.281	16.192	16.198
CF	0.126	0.442	0.220	0.418	0.188	0.316
CCI	0.036	0.042	0.042	0.031	0.036	0.036
0	24.000	24.000	24.000	24.000	24.000	24.000
Fe_FeMg	0.290	0.290	0.290	0.280	0.340	0.330
Mg_FeMg	0.710	0.710	0.710	0.720	0.660	0.670

Tabela 5.4 - Química mineral das biotitas do Complexo Pedra Aguda (continuação...)

Campo 1

Campo 2

Campo 3

Campo 4

PRANCHA V

Figura 5.11 - Minerais analisados por microssonda eletrônica na amostra D-2A (jotunito).

Campo 1 : clinopiroxênio e biotita. Campo 2 : ortopiroxênio. Campo 3 : plagioclásio, ortopiroxênio, anfibólio e biotita. Campo 4 : plagioclásio.

Campo 1

Campo 2

Campo 3

Campo 5

Campo 4

Campo 6

PRANCHA VI

Figura 5.12 - Minerais analisados por microssonda eletrônica na amostra D-4 (norito).

- Campo 1 : plagioclásio e clinopiroxênio.
- Campo 2 : plagioclásio e emioproxênio Campo 3 : plagioclásio e ortopiroxênio. Campo 4 : clinopiroxênio.
- Campo 5 : clinopiroxênio.
- Campo 6 : plagioclásio, ortopiroxênio e biotita.

Campo 1

Campo 2

Campo 3

Campo 4

PRANCHA VII

Figura 5.13 - Minerais analisados por microssonda eletrônica na amostra D-13 (jotunito).

Campo 1 : plagioclásio e biotita.

Campo 2 : plagioclásio.

Campo 3 : plagioclásio, ortopiroxênio e anfibólio.

Campo 4 : plagiocládio, ortopiroxênio e anfibólio.

Campo 1

Campo 2

Campo 3

Campo 4

Campo 5

PRANCHA VIII

Figura 5.14 - Minerais analisados por microssonda eletrônica na amostra D-20 (norito).

Campo 1 : ortopiroxênio.

Campo 2 : plagioclásio, ortopiroxênio e biotita. Campo 3 : plagioclásio.

Campo4 : plagioclásio, anfibólio e ortopiroxênio

Campo 5 : plagioclásio, clinopiroxênio e biotita.

6 – <u>GEOQUÍMICA</u>

6.1 - GENERALIDADES

As análises químicas apresentadas neste capítulo foram realizadas no ACME Analytical Laboratories LTD., Vancouver, Canadá. Foram selecionadas 30 (trinta) amostras de rocha total representativas do Complexo Pedra Aguda, sendo 15 (quinze) de jotunitos, 10 (dez) de noritos, 4 (quatro) de charno-enderbitos e 1 (uma) de charnockito.

O tratamento analítico envolve a determinação dos elementos maiores (SiO_2 , Al_2O_3 , Fe_2O_3 , MgO, CaO, Na₂O, K₂O, TiO₂, P₂O₅, MnO e Cr₂O₃), elementos traços (Ba, Sc, Bi, Co, Cs, Ga, Hf, Nb, Rb, Sn, Sr, Ta, Th, Tl, U, V, W, Zr, Y, Mo, Cu, Pb, Zn, Ni, As, Cd e Sb) e elementos terras raras (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb e Lu).

A avaliação dos dados litoquímicos é tratada sob a forma de percentagens em peso para os óxidos e ppm para os elementos, além de proporções moleculares, cátions e normas e apresentados em diagramas de variação binários ou ternários, classificatórios e discriminantes.

Os resultados das análises são tratados no "software" MINPET 2.02 (Richard, 1995) e são mostrados juntamente com suas normas nas tabelas 6.1 e 6.2.

Devido às semelhanças químicas e petrográficas exibidas entre ao tipos litológicos que compõem o Complexo Pedra Aguda, opta-se neste capítulo pela divisão das mesmas em dois grupos distintos, assim simbolizados:

- . jotunitos e noritos (+)
- . charno-enderbitos e charnockitos (\Box)

6.2 – <u>CARACTERIZAÇÃO GEOQUÍMICA</u>

Os elementos maiores, menores e traços estão aqui representados nos Diagramas de Harker, conforme Figuras 6.1 a 6.4 e nos diversos diagramas classificatórios e discriminantes. Através dos Diagramas de Harker é possível caracterizar uma incoerência geoquímica generalizada para os charno-enderbitos e charnockitos, tanto pela ampla dispersão de pontos observada, dificultando a observação da correlações, como pela quantidade reduzida de análises químicas realizadas para este grupo.

6.2.1 – <u>ELEMENTOS MAIORES E MENORES</u>

As rochas do Complexo Pedra Aguda mostram um intervalo de variação de composição química com relação a SiO₂, de 50,17 a 77,74% (Tabela 6.1). Entretanto, as rochas dominantes, que ocupam quase toda a área do complexo são jotunitos e noritos de composição intermediária , cujos teores de sílica oscilam entre 52,00 e 58,84% (Tabela 6.1). Os termos ácidos mostram teores de sílica entre 75,67 e 77,74% (Tabela 6.1) e são representados predominantemente por charno-enderbitos, com apenas uma amostra (D-40) no campo dos charnockitos. Apenas três amostras (D-21, D- 48 e D-52) mostram composição básica, com teor de sílica entre 50,17 e 51,62% . É importante salientar a ocorrência da lacuna composicional entre 59,00 e 75,00% de SiO₂, sugerindo desta forma, dois conjuntos diferentes de rochas, não formando uma série co-magmática (Tabela 6.1).

Os jotunitos e noritos mostram baixos percentuais de álcalis total (3,09% < Na2O + K2O < 5,46%), com K₂O e Na₂O variando respectivamente de 0,36 a 2,10% e 2,02 a 3,52% (Tabela 6.1) e mostrando correlação positiva com SiO₂ (Figura 6.1). Por outro lado, os charno-enderbitos e charnockitos mostram valores de K₂O entre 1,76 e 4,60% e altos valores de Na₂O (3,74 a 5,51%) e consequentemente valores mais elevados de álcalis total (7,29% < Na₂O + K₂O < 8,34%).

 FeO_t , MgO, MnO, CaO, TiO₂ e P₂O₅ tendem a diminuir com o aumento de sílica nos jotunitos e noritos (Figura 6.1). Os teores mínimo e máximo destes óxidos nestas rochas variam respectivamente de 5,96 a 10,10%; 5,76 a 12,19%; 0,10 a 0,18% ; 5,07 a 9,17%; 0,61 a 1,31% e 0,12 a 0,50% (Tabela 6.1).

Nos termos ácidos (charno-enderbitos e charnockitos), os intervalos de variação de FeO_{t} , MgO e CaO estão entre 0,59 e 0,98%; 0,04 e 0,10% e 0,63 e 1,15% respectivamente. Não se observa, conforme comentado anteriormente, correlação clara destes óxidos com relação a SiO₂ nos diagramas de Harker (Figura 6.2), com exceção de CaO, que apresenta uma correlação negativa com sílica (Figura 6.2).

Os valores de Al₂O₃ são mais altos nos jotunitos e noritos, oscilando de 12,44 até 15,71%, com valor médio de 14,48% e correlacionando-se positivamente com SiO₂ (Figura 6.1). Nos charno-enderbitos e charnockitos, Al₂O₃ varia de 12,17 a 13,43% (Tabela 6.1), com valor médio de 12,94%, enquanto TiO₂, MnO e P₂O₅ apresentam valores iguais a 0,02%; 0,01% e 0,01% respectivamente (Tabela 6.1), que correspondem aos limites de detecção do método aplicado, o que no diagrama de Harker causa uma falsa impressão de correlação. Apenas uma amostra (D-2C) apresenta valores de TiO₂ igual a 0,07 % e P₂O₅ igual a 0,02% (Tabela 6.1).

Com relação ao número de magnésio (Mg# = MgO / MgO + FeO), o primeiro grupo (jotunitos e noritos) mostra os maiores valores (58,97 < Mg# < 71,76), o que pode sugerir uma fonte mantélica para as rochas deste grupo. Por outro lado, naquelas do segundo grupo, o número de magnésio varia de 9,26 a 25,13, significativamente menor, indicando provavelmente uma participação crustal na geração destas rochas (Tabela 6.3).

6.2.2 – <u>ELEMENTOS TRAÇOS</u>

Os diagramas de variação entre SiO_2 e os elementos traços Ba, Rb, Sr, Y, Zr, Nb, Ni e V exibem correlações insignificantes, como no caso dos jotunitos e noritos, ou total ausência de correlação, como no caso dos charno-enderbitos e charnockitos (Figuras 6.3 e 6.4). Os primeiros tipos mostram altos teores em Sr e Ba, com seus teores variando respectivamente de 496,8 a 1140 ppm e 410 a 1459 ppm , com apenas uma amostra (D-21) exibindo teor extremamente elevado de Ba (2007 ppm).

Figura 6.1 – Diagramas de Harker para elementos maiores e menores (% peso) para os jotunitos e noritos do Complexo Pedra Aguda.

Figura 6.1 – Diagramas de Harker para elementos maiores e menores (% peso) para os jotunitos e noritos do Complexo Pedra Aguda (continuação).

Figura 6.2 – Diagramas de Harker para elementos maiores e menores (% peso) para os charnoenderbitos e charnockitos do Complexo Pedra Aguda.

Figura 6.2 – Diagramas de Harker para elementos maiores e menores (% peso) para os charno-enderbitos e charnockitos do Complexo Pedra Aguda (continuação).

O Ba mostra uma fraca correlação negativa com SiO₂, ao passo que Sr exibe uma fraca correlação positiva com este óxido (Figura 6.3). Já para o segundo grupo não se observa enriquecimento nestes elementos. Sr varia de 38,7 a 73,8 ppm e Ba de 69 a 136 ppm, com ambos não apresentando correlação com SiO₂ (Figura 6.4). Nos jotunitos e noritos, Rb varia de 17,95 a 84,67 ppm. As amostras D-04, D-20 e D-46 mostram valores muito baixos para este elemento, respectivamente 2,08, 8,21 e 8,72 ppm (Tabela 6.1), enquanto a amostra D-17 apresenta um valor mais elevado ou seja, 102,56 ppm. No diagrama de Harter (Figura 6.3) o Rb apresenta uma fraca correlação positiva com SiO₂. Para os charno-enderbitos e charnockitos, o Rb oscila entre 39,4 e 168,19 ppm (Tabela 6.1) e não apresenta correção nítida com SiO₂ (Figura 6.4).

Zr, Y e Nb variam respectivamente de 38,3 a 187,4 ppm; 10,2 a 23,2 ppm e 1,40 a 8,74 ppm para as rochas noríticas e jotuníticas (Tabela 6.1) e mostram fracas correlações com SiO₂ (Figura 6.3). Para as demais rochas , estes elementos oscilam entre 44,8 e 120,6 ppm; 29,5 e 71,55 ppm e 4,26 e 37,65 ppm, respectivamente.

Os elementos de transição Ni e V variam de 78 a 214 ppm e 69 a 193 ppm e apresentam distribuição negativa com relação a sílica para os noritos e jotunitos (Figura 6.3). Para os charno-enderbitos e charnockitos estes elementos variam de 5 a 7 ppm e de 7 a 11 ppm respectivamente (Tabela 6.1).

As razões K/Rb e Rb/Sr, em litótipos granulíticos, são importantes indicadores do processo de empobrecimento. Neste sentido, pela maior mobilidade de Rb em relação ao K, durante o metamorfismo de alto grau, elevadas razões K/Rb (>500) são enquadradas ao "Trend de Granulitos Empobrecidos" (DGT) (Jahn, 1990), o qual guarda similaridades com as razões de "Trend Oceânico" (OT), estabelecidas por Shaw, 1968, para toleítos oceânicos ou N-MORB. Em contraste às tendências DGT e OT, o "Trend Médio" (MT) define razões K/Rb mais baixas (<500), próprias de sequências sem empobrecimento.

As razões K/Rb, tanto para os jotunitos e noritos , como para os charnoenderbitos e charnockitos estão entre 200 e 500 (Tabela 6.3), correspondendo, portanto, a tendência MT com exceção das amostras D–04 com K/Rb = 1436,54 e D-17 = 165,93.

De acordo com Jahn (1990), devido as características de menor mobilidade do Sr e empobrecimento preferencial do Rb durante o metamorfismo, várias ocorrências mundiais de granulitos exibem razões Rb/Sr extremamente baixas, normalmente inferiores as do manto superior (0,03). Estas baixas razões indicam reequilíbrio do sistema Rb/Sr durante o metamorfismo. Desta forma, as baixas razões dos litótipos jotuníticos e noríticos (0,00 a 0,06), próximas as do manto superior indicam reequilíbrio do sistema Rb/Sr durante o metamorfismo, com forte enriquecimento em Sr. Duas amostras deste grupo mostram razão Rb/Sr bastante superiores a este intervalo, a amostra D-30 (Rb/Sr = 0,09) e a amostra D-17 (Rb/Sr = 0,11) (Tabela 6.3). Para os charno-enderbitos e charnockitos, as razões Rb/Sr são bem mais elevadas, variando de 0,54 a 4,34 (Tabela 6.3).

Figura 6. 3 – Diagramas de Harker para elementos traços (ppm) para os jotunitos e noritos do Complexo Pedra Aguda.

Figura 6. 3 – Diagramas de Harker para elementos traços (ppm) para os jotunitos e noritos do Complexo Pedra Aguda (continuação).

Figura 6.4 – Diagramas de Harker para elementos traços (ppm) para os charnoenderbitos e charnockitos do Complexo Pedra Aguda.

Figura 6.4 – Diagramas de Harker para elementos traços (ppm) para os charnoenderbitos e charnockitos do Complexo Pedra Aguda (continuação).

Os diagramas multi-elementares (aranhogramas) são uma extensão dos diagramas de elementos terras raras, aos quais outros elementos traços são adicionados e seu uso tem sido estendido a todas as rochas ígneas e algumas sedimentares (Rollinson, 1993).

Tais diagramas, normalizados pelo condrito (Taylor e McLennan, 1985), apresentados na figura 6.5, caracterizam distribuições distintas entre o grupo dos jotunitos e noritos e o grupo dos charno-enderbitos e charnockitos, denotando, portanto, fontes diferentes para os dois grupos.

Entre jotunitos e noritos, os padrões multi-elementares são bastante similares. Tanto os jotunitos (Figuras 6.5 A e B) como os noritos (Figuras 6.5 C) mostram enriquecimento em elementos incompatíveis, especialmente nos "LILE" (Elementos litófilos de íons grandes) Ba e Sr, (Figuras 6.5 A, B e C)), e nos "LREE" (elementos terras raras leves) La e Sm, com anomalias negativas significativas de Cs. (Figura 6.5 A, B e C). Empobrecimento em "HFSE" (Elementos de alto potencial iônico) é comum dentro deste grupo, com anomalias negativas significativas de Nb e menores de Ce e Zr (Figura 6.5 A, B e C).

O grupo dos charno-enderbitos e charnockitos mostra padrão de multielementos bastante diferente daquele dos jotunitos e noritos. Comum aos dois grupos, só o empobrecimento em Cs. Presença ainda de anomalia negativa de Sr e com relação aos "HFSE", observa-se proeminente anomalia negativa de Ti e positiva de Th. (Figura 6.5 D).

6.2.3 – <u>ELEMENTOS TERRAS RARAS</u>

O padrão de distribuição de elementos terras raras para as rochas do Complexo Pedra Aguda está normalizado pelo condrito segundo Taylor e McLennan (1985). Os conteúdos desses elementos nos diferentes tipos petrográficos são mostrados na tabela 6.1.

O somatório dos "REE"(elementos terras raras) para as rochas do complexo como um todo varia de 38,12 a 175,61 ppm (Figura 6.6 A).

Para jotunitos e noritos, o ΣREE varia de 86,40 a 175,61 ppm, correspondendo a um enriquecimento em relação ao condrito da ordem de 100 vezes.

Figura 6.5 – Caracterização geoquímica para as rochas do Complexo Pedra Aguda. Diagramas Multi-elementos normalizados pelo Condrito (Taylor e McLennan, 1985). A e B – jotunitos, C – noritos e D – charno-enderbitos e charnockitos.

As rochas deste grupo mostram moderado grau de fracionamento, com enriquecimento em "LREE" (Elementos terras raras leves) com relação aos "RREE" (Elementos terras raras pesados) e a razão La/Yb entre 11,91 e 31,59 (Tabela 6.3). As anomalias de Eu variam de fracamente negativas (0,98 >Eu/Eu* > 0,53) a fracamente positivas (1,31 >Eu/Eu* > 1,02), com duas amostras apresentando Eu/Eu* = 1,00.

Para os charno-enderbitos e charnockitos, o ΣREE varia de 38,12 a 146,18, correspondendo a um enriquecimento com relação ao condrito da ordem de 50 vezes (Figura 6.6B).

Praticamente não se observa, neste grupo, enriquecimento em elementos terras raras leves com relação aos elementos terras raras pesados. A razão La/Yb, mostra um restrito intervalo de variação (0,78 a 3,88), indicando rochas pouco fracionadas. Expressivas anomalias negativas de Eu são observadas neste grupo, com Eu/Eu* oscilando de 0,02 a 0,09 (Tabela 6.3).

6.3 – CARACTERIZAÇÃO LITOLÓGICA

Todas as rochas que compõem o Complexo Pedra Aguda são classificadas através de diagramas geoquímicos, que levam em consideração somente minerais siálicos, baseados ou em porcentagem em peso ou norma (Figuras 6.7 e 6.8) e que levam em consideração tanto os minerais siálicos quanto os máficos, representados em parâmetros multicatiônicos (Figura 6.9).

Figura 6.6 – Caracterização geoquímica para as rochas do Complexo Pedra Aguda. Padrão de distribuição de elementos terras raras normalizado pelo Condrito (Taylor e McLennan, 1985). A – jotunitos e noritos e B – charno-enderbitos e charnockitos.

Na classificação segundo o esquema TAS, conteúdo de sílica x total de álcalis adaptada para rochas plutônicas por Wilson (1989) (Figura 6.7) e por Middlemost (1994) (Figura 6.8) os jotunitos e noritos apresentam composições no campo dos gabros, dioritos gabróides e dioritos, enquanto que termos ácidos, mostram no diagrama da Figura 6.8, composição essencialmente granítica.

No diagrama de classificação $R_1 \ge R_2$ de La Roche et al. (1980) (Figura 6.9) que utiliza a maioria dos elementos que constituem as rochas ígneas, a composição global das rochas do complexo varia desde gabro-noritos até granitos, retratando o intervalo de variação de sílica, sendo que os termos mais básicos plotam nos campos dos gabro-noritos, gabros e dioritos e os mais ácidos plotam novamente no campo dos granitos.

Figura 6.7 – Caracterização litológica para as rochas do Complexo Pedra Aguda, segundo o diagrama Álcalis x SiO_2 (% peso) de Wilson (1989) (+ para jotunitos e noritos).

Figura 6.8 – Caracterização litológica para as rochas do Complexo Pedra Aguda, segundo o diagrama Álcalis x SiO₂ (% peso) de Middlemost (1994). (+ para jotunitos e noritos e □ para charnoenderbitos e charnockitos).

Figura 6.9 – Caracterização litológica para as rochas do Complexo Pedra Aguda segundo o diagrama catiônico $R_1 \times R_2$ de De La Roche et al. (1980) (+ para jotunitos e noritos e \Box para charno-enderbitos e charnockitos).

 $R_1 = [4Si - 11(Na + K) - 2(Fe + Ti)]; R_2 = 6Ca + 2Mg + Al.$

6.4 – <u>CARACTERIZAÇÃO SERIAL</u>

Para a caracterização serial são usados diagramas que levam em consideração tanto minerais siálicos como máficos.

No diagrama Álcalis x SiO₂ (Figura 6.10), que subdivide as rochas em alcalinas e subalcalinas, as rochas do Complexo Pedra Aguda como um todo são caracterizadas como subalcalinas e mostram tanto no diagrama AFM (Figura 6.11 A), como no diagrama FeOt/MgO x SiO₂ (Figura 6.11 B) sua tendência cálcio-alcalina. No diagrama AFM, utilizado para caracterizar séries cálcio-alcalinas e toleíticas, os jotunitos e noritos plotam próximos ao limite dos campos cálcio-alcalino e toleítico. Já os charno-enderbitos e charnockitos plotam na linha junto ao lado AF do diagrama, denotando seu empobrecimento em MgO e FeO. Apesar de mostrarem seu caráter cálcio-alcalino, os dois grupos não definem uma série co-magmática.

Figura 6.10 – Caracterização serial para as rochas do Complexo Pedra Aguda. Diagrama Álcalis x SiO₂ (% peso) de Irvine e Baragar (1971) (+ para jotunitos e noritos e □ para charno-enderbitos e charnockitos).

Figura 6.11 – Caracterização serial para as rochas do Complexo Pedra Aguda.
A - Diagrama Álcalis : FeOt : MgO (% peso) de Irvine e Baragar (1971) e B - Diagrama FeOt / MgO x SiO₂ (% peso) de Miyashiro (1974) (+ para jotunitos e noritos e □ para charno-enderbitos e charnockitos).

No diagrama A / NK x A / CNK (Maniar e Piccoli, 1989), os jotunitos e noritos plotam no campo das rochas metaluminosas. O intervalo de variação do índice de alumina-saturação total para estas rochas situa-se entre 0,58 e 0,90, o que se reflete na ausência de coríndon normativo, pois todas as amostras plotam abaixo da razão unitária (Figura 6.12). Já os charno-enderbitos e charnockitos são metaluminosos a fracamente peraluminosos, conforme mostra o diagrama (Figura 6.12). O intervalo de variação do índice de alumina saturação total situa-se entre 0,98 e 1,07, o que se reflete na presença de coríndon normativo para as amostras que plotam acima da razão unitária (D-2B=0,53; D2C=0,67 e D-36=0,75) (Tabela 6.2).

Figura 6.12 – Caracterização serial para as rochas do Complexo Pedra Aguda. Diagrama $Al_2O_3 / (Na_2O + K_2O) \times Al_2O_3 / (CaO + Na_2O + K_2O) \pmod{1945}$ (molar) de Maniar e Piccoli, modificado de Shand (1945) (+ para jotunitos e noritos e \Box para charno-enderbitos e charnockitos).

6.5 – <u>CARACTERIZAÇÃO DA FONTE</u>

Uma das grandes questões concernentes às rochas metamórficas é relativa a natureza ígnea ou sedimentar das rochas pré-metamórficas. Uma das várias maneiras de se obter este suporte é através do diagrama discriminatório $TiO_2 \times SiO_2$ (Figura 6.13), dentro do qual, a grande maioria dos tipos petrográficos que compõem o Complexo Pedra Aguda encontra-se posicionada no campo das rochas ígneas. A presença de alguns tipos com características sedimentares, sugere a interveniência de materiais crustais na evolução do complexo.

Figura 6.13 – Diagrama SiO₂ x TiO₂ para caracterização do protólito das rochas do Complexo Pedra Aguda de Tarney, 1977 (+ para jotunitos e noritos e \Box para charno-enderbitos e charnockitos).

Os altos valores dos números de magnésio apresentados pelos jotunitos e noritos (Mg# > 58) sugerem uma fonte mantélica para as rochas deste grupo. Por outro lado, as altas concentrações de Ba, Sr e elementos terras raras leves sugerem que a rocha fonte passou por um enriquecimento como resultado da interação crosta-manto e/ou metassomatismo mantélico.

Para os tipos charno-enderbíticos e charnockiticos, feições como extremas anomalias negativas de Eu e baixo conteúdo de Sr indicam que estas rochas, provavelmente representam um magma residual altamente evoluído após cristalização fracionada de plagioclásio e fases contendo elementos terras raras leves.

6.6 – CARACTERIZAÇÃO TECTÔNICA

No diagrama discriminante de ambientes geotectônicos baseado na relação dos elementos traços Rb x (Y + Nb) proposto por Pearce et al (1984), da figura 6.14 A que subdivide as rochas graníticas em quatro grupos principais de acordo com o meio onde foram geradas (cadeia oceânica – "ORG", arco vulcânico – "VAG", intraplaca – "WPG" e de colisão – "SYN_COLG"), os jotunitos e noritos distribuem-se no campo "VAG", enquanto que charno-enderbitos e charnockitos ocupam os campos "VAG" e "WPG". No diagrama Nb x Y (Pearce et al.,1984), as rochas do primeiro grupo ocupam o campo "VAG + SYN-COLG", enquanto os litótipos do segundo grupo plotam nos campos "VAG + SYN-COLG" e "WPG" (Figura 6.14 B).

Figura 6.14 – Caracterização tectônica para as rochas do Complexo Pedra Aguda. A – Diagrama Rb x Y + Nb (ppm) e B – Diagrama Nb x Y (ppm) de Pearce et al. (1984) (+ para jotunitos e noritos e □ para charno-enderbitos e charnockitos.).

As rochas do Complexo, no diagrama $R_1 \ge R_2$ de Batchelor e Bowden (1985) distribuem-se em dois campos distintos. Os jotunitos e noritos plotam no campo 2, dos granitóides pre-colisionais, enquanto os charno-enderbitos e charnockitos plotam no campo 6 dos granitóides sin-colisionais (Figura 6.15).

Figura 6. 15 – Caracterização tectônica para as rochas do Complexo Pedra Aguda. Diagrama $R_1 \times R_2$ de Batchelor e Bowden (1985) (+ para jotunitos e noritos e \Box para charno-enderbitos e charnockitos).

Já nos diagramas $Zr/Al_2O_3 \times TiO_2/Al_2O_3$ de Pearce e Gale (1977) e Y x Zr de Thompson e Fowler (1986) todas as rochas do Complexo Pedra Aguda plotam no campo relacionado a arco (Figura 6.16 A e B).

Figura 6.16 – Caracterização tectônica para as rochas do Complexo Pedra Aguda. A – Diagrama Y x Zr (ppm) de Thompson e Fowler (1986) e B - Diagrama Zr / Al_2O_3 x TiO_2/Al_2O_3 de Pearce e Gale (1977) (+ para jotunitos e noritos e \Box para charno-enderbitos e charnockitos).
AMOSTRA / ELEMENTO	D-21 JOTUNITO	D-52 NORITO	D-48 JOTUNITO	D-30 JOTUNITO	D-46 NORITO	D-14 NORITO
SiO ₂	50,17	51,34	51,62	52,00	52,00	52,03
TiO ₂	1,22	0,84	0,82	0,99	1,17	0,74
Al ₂ O ₃	12,47	14,44	14,06	14,83	15,71	13,85
Fe ₂ O ₃	9,28	9,65	8,75	9,05	10,10	9,27
MnO	0,16	0,16	0,14	0,18	0,16	0,15
MgO	11,12	10,44	11,17	8,54	7,33	10,99
CaO	9,17	7,67	7,8	6,87	8,18	7,66
Na₂O	2,02	2,56	2,49	2,89	3,04	2,51
K ₂ O	1,55	0,82	0,93	2,10	0,51	0,83
P_2O_5	0,5	0,33	0,26	0,50	0,30	0,31
Cr ₂ O ₃	0,099	0,083	0,086	0,076	0,053	0,115
LOI	1,7	1,2	1,3	1,5	1,0	1,0
Total	99,46	99,53	99,43	99,53	99,55	99,46
Ва	2007	1207	1193	1421	632	971
Rb	60,54	20,00	26,97	84,67	8,72	25,78
Sr	1080,7	883,1	729,8	892,7	929,7	908,8
Y	22,1	12,2	11,4	23,2	13,1	10,5
Zr	75,0	39,5	101,2	170,7	38,3	65,9
Nb	6,25	2,58	2,89	8,10	5,37	2,96
Th	2,1	0,1	0,3	1,6	0,2	0,6
Pb	3	3	3	3	3	3
Ga	16	16,1	17,1	19,4	18,2	15,9
Zn	44	37	29	69	33	33
Cu	58	32	35	42	56	35
Ni	144	122	154	161	78	142
V	162	136	132	121	142	129
Hf	1,8	0,9	2,2	4,1	0,9	1,6
Cs	0,9	0,3	0,4	1,2	0,2	0,3
Sc	24	16	17	19	17	18
Та	0,3	0,1	0,1	0,4	0,3	0,1
Co	40,7	38,4	42,8	34,7	37,2	40,4
U	0,1	0,1	0,1	0,1	0,1	0,1
W	1,6	0,5	0,5	1,7	0,7	0,6
Sn	2,1	0,5	0,5	0,7	0,5	0,5
Мо	3	3	3	4	5	3
La	26,8	21,8	17,4	32,9	18,9	19,2
Ce	63,6	40,4	34,4	71,0	36,7	41,7
Pr	9,62	5,76	4,83	9,89	5,09	5,55
Nd	38,5	22,0	18,2	37,9	19,2	21,1
Sm	6,8	3,4	3	6,5	3,3	3,4
Eu	1,10	1,04	0,91	1,32	1,21	0,99
Gd	5,85	3,18	2,76	5,58	3,15	3,24
Tb	1,14	0,57	0,52	1,18	0,58	0,59
Dy	4,39	2,26	2,04	4,64	2,34	2,32
Но	0,81	0,39	0,4	0,89	0,48	0,44
Er	1,7	0,90	0,86	1,84	0,98	0,96
Tm	0,29	0,16	0,14	0,30	0,19	0,16
Yb	1,46	0,84	0,85	1,43	0,91	0,89
Lu	0,26	0,14	0,15	0,24	0,16	0,15

Tabela 6.1 – Concentração de elementos maiores (% peso) e de elementos traços (ppm) para as rochas do Complexo Pedra Aguda.

AMOSTRA /	D-60 JOTUNITO	D-51 NORITO	D-45 JOTUNITO	D-50 NORITO	D-44 JOTUNITO	D-38 NORITO
SiO	52.16	52.27	52.35	52.37	52.41	52.50
	0.75	0.74	0.86	0.78	0.78	0.73
	14.66	14 67	12 76	14 45	13.96	14 73
Fe ₂ O ₂	9.05	9.09	9.50	8.62	9.39	8.52
MnO	0.15	0.15	0.15	0.14	0.15	0.14
ΜαΟ	9.60	9.65	12.19	10.72	10.54	10.33
CaO	6.93	6.93	7.04	7.09	7.06	7.04
Na ₂ O	3.07	3.07	2.38	2.84	2.70	2.88
K ₂ O	0.99	0.93	1.31	0.80	0.98	0.91
P ₂ O ₅	0.29	0.34	0.28	0.27	0.29	0.27
Cr_2O_3	0.079	0.086	0.104	0.097	0.092	0.088
LOI	1.6	1.5	0.6	1.2	1.1	1.4
Total	99.33	99.43	99.52	99.40	99.45	99.54
Ва	1239	1233	1459	1114	1302	1068
Rb	21.02	20.56	29.93	17.95	28.28	25.11
Sr	924.1	880.5	825.0	906.9	885.2	969.8
Y	13.5	13.1	11.9	11.6	10.6	12.6
Zr	62.6	56.0	43.6	71.9	86.7	69.6
Nb	2.42	2.28	2.69	2.38	3.84	3.22
Th	0.1	0.1	0.5	0.1	1.1	1.4
Pb	3	3	3	3	3	3
Ga	18.7	17.6	15.2	16.8	16.1	17.5
Zn	42	43	31	32	38	40
Cu	19	19	35	32	27	26
Ni	143	143	214	138	175	156
V	156	140	129	128	138	129
Hf	1.3	1.2	1.0	1.6	2.0	1.6
Cs	0.4	0.4	0.5	0.3	0.4	0.3
Sc	16	15	18	16	17	17
Та	0.1	0.1	0.1	0.1	0.1	0.1
Co	37.2	35.6	44.1	37.1	39.0	38.3
U	0.1	0.1	0.1	0.1	0.1	0.1
W	0.5	0.5	0.6	1.0	1.1	0.6
Sn	0.5	0.5	0.5	3.0	0.9	0.5
Mo	3	3	4	6	5	4
La	25.1	23.7	19.8	20.8	20.0	23.1
Ce	44.3	43.3	39.3	38.2	38.9	47.0
Pr	6.13	5.84	5.49	5.25	5.38	6.13
Nd	22.3	21.5	20.8	19.7	19.7	22.1
Sm	3.4	3.4	3.2	3.1	3.2	3.6
Eu	1.08	1.09	0.90	1.06	0.98	1.08
Gd	3.38	3.13	3.09	3.00	2.91	3.48
Tb	0.58	0.60	0.56	0.52	0.54	0.61
Бу	2.32	2.23	2.23	2.15	2.04	2.35
HO	0.46	0.44	0.41	0.41	0.41	0.46
Er	0.92	0.90	0.93	0.83	0.84	0.99
I m	0.16	0.16	0.15	0.14	0.15	0.16
YD	0.84	0.87	0.84	0.79	0.82	0.97
LU	0.15	0.15	0.15	0.14	0.14	0.16

Tabela 6.1 – Concentração de elementos maiores (% peso) e de elementos traços (ppm) para as rochas do Complexo Pedra Aguda (continuação...)

AMOSTRA / ELEMENTO	D-49 A NORITO	D-20 NORITO	D-49B NORITO	D-04 NORITO	D-42 JOTUNITO	D-2A JOTUNITO
SiO ₂	52.54	52.55	52.89	53.66	54.03	54.04
TiO ₂	0.84	1.31	0.85	0.88	0.61	0.75
AI_2O_3	14.29	15.66	14.29	15.04	12.44	14.77
Fe ₂ O ₃	8.80	9.49	8.90	9.65	10.06	8.18
MnO	0.15	0.16	0.13	0.16	0.16	0.13
MgO	10.53	8.03	10.25	8.82	10.16	9.16
CaO	6.93	7.74	6.67	7.45	7.84	7.31
Na₂O	2.90	3.07	3.52	3.31	2.15	2.87
K ₂ O	0.90	0.47	0.92	0.36	0.94	1.27
P_2O_5	0.37	0.31	0.36	0.25	0.12	0.31
Cr_2O_3	0.088	0.065	0.078	0.070	0.106	0.084
LOI	1.30	0.8	1.0	0.00	0.9	0.7
Total	99.64	99.66	99.86	99.65	99.52	99.57
Ва	1300	488	1304	410	845	1025
Rb	27.44	8.21	27.48	2.08	28.51	32.93
Sr	967.4	1072.0	953.2	1140.1	496.0	906.9
Y	12.2	11.6	14.1	10.2	17.8	11.8
Zr	69.5	47.3	73.8	71.8	134.6	56.5
Nb	2.70	6.01	2.65	4.03	3.21	1.40
Th	0.1	4.4	0.8	0.7	2.2	0.7
Pb	3	3	3	3	3	3
Ga	17.8	18	17.7	16.3	14.3	15.9
Zn	33	33	35	19	38	33
Cu	18	54	19	84	58	34
Ni	149	80	132	120	84	126
V	130	114	121	126	193	108
Hf	1.5	1.0	1.4	1.7	3.5	1.6
Cs	0.5	0.1	0.4	0.1	0.8	0.6
Sc	16	16	16	17	21	15
Та	0.1	0.3	0.2	0.2	0.2	0.1
Со	39.1	37.4	34.4	37.8	41.6	33.8
U	0.1	0.1	0.1	0.1	0.1	0.1
VV	0.5	5.6	0.7	0.9	1.1	1.2
Sn	0.5	0.7	0.5	0.5	0.5	0.6
Mo	4	5	5	5	4	4
La	22.8	19.0	23.6	18.8	16.8	20.5
Ce	43.4	39.5	41.2	38.9	30.8	47.6
Pr	5.90	5.28	5.87	4.99	5.23	6.48
NO Ora	21.9	20	22.3	18.5	19.8	24.3
Sm	3.4	3.2	3.2	3.1	3.7	4
EU	1.13	1.21	1.17	1.31	0.68	1.08
Gu Ть	3.33 0.59	3.09	3.31	3.UZ	3.03	3.0 0.60
	0.00	0.57	0.09	0.03	0.71	0.09
Цо	2.21	2.20	2.39	2.14	3.13	2.04
Er	0.42	0.40	0.45	0.42	0.04	0.00
	0.07	0.93	0.97	0.92	0.27	0.12
Yh	0.10	0.17	0.17	0.17	0.27	0.2 1.04
10	0.00	0.35	0.35	0.34	0.25	0.17

Tabela 6.1 – Concentração de elementos maiores (% peso) e de elementos traços (ppm) para as rochas do Complexo Pedra Aguda (continuação...)

AMOSTRA / ELEMENTO	D-34 JOTUNITO	D-39 JOTUNITO	D-01 JOTUNITO	D-35 JOTUNITO	D-13 JOTUNITO	D-47 JOTUNITO
SiO ₂	54.22	54.35	55.23	55.25	55.56	55.77
TiO ₂	0.77	0.83	0.80	0.79	0.74	0.76
Al ₂ O ₃	14.83	14.69	14.69	15.35	14.65	15.17
Fe ₂ O ₃	8.49	8.38	7.72	8.13	7.96	7.63
MnO	0.14	0.13	0.12	0.13	0.13	0.13
MgO	9.67	9.39	8.60	8.25	8.48	7.82
CaO	6.77	6.68	6.46	6.20	6.23	6.18
Na ₂ O	2.87	2.95	3.12	3.18	3.11	3.18
K₂Ō	1.04	1.07	1.40	1.28	1.2	1.21
P ₂ O ₅	0.29	0.33	0.31	0.30	0.25	0.37
Cr_2O_3	0.089	0.079	0.071	0.076	0.086	0.066
LOI	0.4	0.7	1.0	0.6	1.2	1.3
Total	99.58	99.58	99.52	99.54	99.60	99.59
Ва	1042.0	1100	1147	1267	999	1132
Rb	32.25	31.34	27.81	42.41	36.61	35.14
Sr	941.8	984.0	885.9	1088.0	937.9	968.3
Y	10.9	11.4	12.7	12.5	11.1	12.2
Zr	63.2	114.0	112.6	136.3	98.7	93.6
Nb	5.42	3.72	4.63	4.39	4.32	3.83
Th	1.0	1.2	1.6	2.2	1.9	1.9
Pb	3.0	3.0	3.0	3.0	3.0	3.0
Ga	17.1	17.6	17.1	19.1	17.1	17.7
Zn	32	32	38	37	36	46
Cu	29	32	27	24	28	34
Ni	131	129	121	121	116	119
V	119	123	118	104	96	96
Hf	1.6	2.7	2.6	3.3	2.4	2.1
Cs	0.5	0.6	0.7	1.2	0.8	1.2
Sc	15	15	14	14	13	13
Та	0.4	0.2	0.2	0.2	0.2	0.2
Со	36.3	36.6	32.5	32.4	31.5	28.8
U	0.1	0.1	0.1	0.3	0.1	0.1
W	2.0	0.5	1.2	0.8	2.1	0.9
Sn	1.9	0.5	0.7	1.0	0.5	0.5
Мо	5.0	4.0	5.0	4.0	5.0	4.0
La	21.6	25.4	27.8	28.2	25.7	24.9
Ce	44.1	51.1	47.7	54.9	53.3	46.4
Pr	5.78	6.68	6.31	7.22	6.74	6.18
Nd	21.1	23.8	22.1	26.1	23.5	22.5
Sm	3.3	3.6	3.2	3.7	3.7	3.4
Eu	1.05	1.10	0.97	1.13	1.06	1.12
Gd	3.10	3.40	3.21	3.84	3.51	3.39
Tb	0.56	0.59	0.56	0.63	0.61	0.57
Dy	2.14	2.26	2.13	2.39	2.37	2.23
Ho	0.42	0.43	0.42	0.44	0.43	0.41
Er	0.93	0.97	0.89	0.99	1.00	0.91
Tm	0.15	0.18	0.15	0.18	0.17	0.15
Yb	0.85	0.89	0.88	0.97	0.9	0.86
Lu	0.14	0.16	0.15	0.17	0.15	0.15

Tabela 6.1 – Concentração de elementos maiores (% peso) e de elementos traços (ppm) para as rochas do Complexo Pedra Aguda (continuação...)

AMOSTRA / ELEMENTO	D-17 JOTUNITO	D-2F CHARNO- ENDERBITO	D-2C CHARNO- ENDERBITO	D-2B CHARNO- ENDERBITO	D-40 CHARNOCKITO	D-36 CHARNO- ENDERBITO
SiO ₂	58.84	75.67	76.94	76.97	77.26	77.74
TiO ₂	0.66	0.02	0.07	0.02	0.02	0.02
Al ₂ O ₃	15.43	13.43	13.19	12.97	12.17	12.94
Fe ₂ O ₃	5.96	0.96	0.98	0.97	0.60	0.59
MnO	0.10	0.01	0.01	0.01	0.01	0.01
MgO	5.76	0.06	0.09	0.05	0.04	0.10
CaO	5.07	1.15	0.86	0.92	0.66	0.63
Na₂O	3.41	5.00	5.51	4.93	3.74	5.47
K ₂ O	2.05	3.00	1.78	2.47	4.6	1.91
P ₂ O ₅	0.24	0.01	0.02	0.01	0.01	0.01
Cr ₂ O ₃	0.066	0.055	0.053	0.055	0.042	0.050
LOI	2.0	0.6	0.4	0.5	0.8	0.5
Total	99.59	99.97	99.90	99.88	99.95	99.97
Ва	1187	88	136	99	69	81
Rb	102.56	107.22	39.4	82.16	168.10	50.50
Sr	893.0	39.8	68.8	49.5	38.7	73.8
Y	10.5	53.5	38.1	71.5	37.1	29.5
Zr	187.4	62.2	75.1	103.5	120.6	44.8
Nb	8.74	17.29	4.26	37.65	7.24	11.43
Th	5.1	5.4	3.7	11.6	4.8	2.7
Pb	3	6	3	5	6	3
Ga	19.3	26.7	24.7	28.2	31.7	31
Zn	63	12	7	9	5	3
Cu	13	2	2	5	3	3
Ni	108	6	6	6	5	7
V	69	10	11	11	7	8
Hf	4.7	3.7	3.8	6.4	7.9	2.3
Cs	3.0	0.4	0.3	0.4	0.9	0.3
Sc	10	1	1	1	1	17
Та	0.6	0.6	0.3	2.3	0.5	0.3
Со	23.4	1.0	1.5	1	0.9	0.9
U	1.0	0.7	0.3	4.1	0.8	0.8
W	1.9	4.7	10.8	7.1	2.2	2.7
Sn	1.4	2.3	1.1	2.6	0.5	1.4
Мо	5	17	13	16	13	15
La	23.3	2.6	10.7	19.1	8.8	3.9
Ce	47.0	7.0	26.0	47.0	27.2	9.4
Pr	47.0	1.3	20.0	47.0	21.2	
Nd	5.78	1.28	3.76	6.5	4.25	1.56
Sm	5.78 20.2	1.28 6.6	26.8 3.76 14.7	6.5 24.3	4.25	1.56 6.9
Eu	5.78 20.2 3.3	1.3 1.28 6.6 3.0	20.8 3.76 14.7 4.3	47.8 6.5 24.3 7.1	4.25 16.5 4.8	1.56 6.9 2.3
Gd	5.78 20.2 3.3 1.04	1.3 1.28 6.6 3.0 0.05	20.8 3.76 14.7 4.3 0.15	47.8 6.5 24.3 7.1 0.05	4.25 16.5 4.8 0.05	1.56 6.9 2.3 0.05
	5.78 20.2 3.3 1.04 3.16	7.3 1.28 6.6 3.0 0.05 4.21	20.0 3.76 14.7 4.3 0.15 5.36	6.5 24.3 7.1 0.05 8.74	4.25 16.5 4.8 0.05 4.39	1.56 6.9 2.3 0.05 2.86
Tb	5.78 20.2 3.3 1.04 3.16 0.57	7.3 1.28 6.6 3.0 0.05 4.21 1.29	20.8 3.76 14.7 4.3 0.15 5.36 1.45	47.8 6.5 24.3 7.1 0.05 8.74 2.47	4.25 16.5 4.8 0.05 4.39 1.19	1.56 6.9 2.3 0.05 2.86 0.86
Tb Dy	5.78 20.2 3.3 1.04 3.16 0.57 2.11	7.3 1.28 6.6 3.0 0.05 4.21 1.29 6.25	20.8 3.76 14.7 4.3 0.15 5.36 1.45 6.71	47.8 6.5 24.3 7.1 0.05 8.74 2.47 11.97	4.25 16.5 4.8 0.05 4.39 1.19 5.23	1.56 6.9 2.3 0.05 2.86 0.86 4.14
Tb Dy Ho	5.78 20.2 3.3 1.04 3.16 0.57 2.11 0.38	7.3 1.28 6.6 3.0 0.05 4.21 1.29 6.25 1.56	20.8 3.76 14.7 4.3 0.15 5.36 1.45 6.71 1.55	47.8 6.5 24.3 7.1 0.05 8.74 2.47 11.97 2.83	4.25 16.5 4.8 0.05 4.39 1.19 5.23 1.13	1.56 6.9 2.3 0.05 2.86 0.86 4.14 0.99
Tb Dy Ho Er	5.78 20.2 3.3 1.04 3.16 0.57 2.11 0.38 0.84	7.3 1.28 6.6 3.0 0.05 4.21 1.29 6.25 1.56 3.37	20.8 3.76 14.7 4.3 0.15 5.36 1.45 6.71 1.55 3.09	47.8 6.5 24.3 7.1 0.05 8.74 2.47 11.97 2.83 6.3	4.25 4.25 16.5 4.8 0.05 4.39 1.19 5.23 1.13 2.46	1.56 6.9 2.3 0.05 2.86 0.86 4.14 0.99 2.09
Tb Dy Ho Er Tm	47.0 5.78 20.2 3.3 1.04 3.16 0.57 2.11 0.38 0.84 0.15	7.3 1.28 6.6 3.0 0.05 4.21 1.29 6.25 1.56 3.37 0.67	20.8 3.76 14.7 4.3 0.15 5.36 1.45 6.71 1.55 3.09 0.58	47.8 6.5 24.3 7.1 0.05 8.74 2.47 11.97 2.83 6.3 1.3	4.25 4.25 16.5 4.8 0.05 4.39 1.19 5.23 1.13 2.46 0.51	1.56 6.9 2.3 0.05 2.86 0.86 4.14 0.99 2.09 0.42
Tb Dy Ho Er Tm Yb	47.0 5.78 20.2 3.3 1.04 3.16 0.57 2.11 0.38 0.84 0.15 0.85	7.3 1.28 6.6 3.0 0.05 4.21 1.29 6.25 1.56 3.37 0.67 3.33	20.8 3.76 14.7 4.3 0.15 5.36 1.45 6.71 1.55 3.09 0.58 2.76	47.8 6.5 24.3 7.1 0.05 8.74 2.47 11.97 2.83 6.3 1.3 6.62	4.25 4.25 16.5 4.8 0.05 4.39 1.19 5.23 1.13 2.46 0.51 2.77	1.56 6.9 2.3 0.05 2.86 0.86 4.14 0.99 2.09 0.42 2.25

Tabela 6.1 – Concentração de elementos maiores (% peso) e de elementos traços (ppm) para as rochas do Complexo Pedra Aguda (continuação...)

AMOSTRA	D-01	D-2 A	D-2B	D-2C	D-2F	D-04
	JOTUNITO	JOTUNITO	CHARNO-ENDERBITO	CHARNO-ENDERBITO	CHARNO-ENDERBITO	NORITO
Q	3.83	2.10	36.59	35.92	32.39	1.84
С	0.00	0.00	0.53	0.67	0.00	0.00
Or	8.47	7.66	14.72	10.60	17.88	2.16
Ab	26.96	24.72	41.99	46.86	42.59	28.32
An	22.40	24.09	4.54	4.18	5.35	25.40
Ne	0.00	0.00	0.00	0.00	0.00	0.00
Lc	0.00	0.00	0.00	0.00	0.00	0.00
Ac	0.00	0.00	0.00	0.00	0.00	0.00
Ns	0.00	0.00	0.00	0.00	0.00	0.00
Di	6.85	8.88	0.00	0.00	0.30	8.54
DiWo	3.56	4.61	0.00	0.00	0.14	4.41
DiEn	2.36	3.05	0.00	0.00	0.02	2.77
DiFs	0.93	1.22	0.00	0.00	0.14	1.36
Ну	27.36	28.43	1.35	1.36	1.21	29.19
HyEn	19.62	20.29	0.13	0.23	0.13	19.56
HyFs	7.73	8.14	1.23	1.14	1.08	9.63
Ol	0.00	0.00	0.00	0.00	0.00	0.00
OlFo	0.00	0.00	0.00	0.00	0.00	0.00
OlFa	0.00	0.00	0.00	0.00	0.00	0.00
Mt	1.89	1.98	0.22	0.23	0.21	2.32
Hm	0.00	0.00	0.00	0.00	0.00	0.00
11	1.55	1.45	0.04	0.13	0.04	1.69
Ар	0.69	0.69	0.02	0.04	0.02	0.55
C_I	37.66	40.75	1.61	1.73	1.76	41.73
D_I	39.25	34.48	93.30	93.38	92.86	32.32

Tabela 6.2 – Composições normativas CIPW relativas às análises mostradas na tabela 6.1.

AMOSTRA	D-13	D-14	D-17	D-20	D-21	D-30
	JOTUNITO	NORITO	JOTUNITO	NORITO	JOTUNITO	JOTUNITO
Q	5.05	0.00	10.32	2.64	0.00	0.00
С	0.00	0.00	0.00	0.00	0.00	0.00
Or	7.27	5.03	12.50	2.84	9.46	12.78
Ab	26.92	21.74	29.70	26.48	17.62	25.13
An	22.98	24.64	21.34	28.09	21.00	21.86
Ne	0.00	0.00	0.00	0.00	0.00	0.00
Lc	0.00	0.00	0.00	0.00	0.00	0.00
Ac	0.00	0.00	0.00	0.00	0.00	0.00
Ns	0.00	0.00	0.00	0.00	0.00	0.00
Di	5.79	10.02	2.54	7.48	18.39	8.23
DiWo	3.00	5.20	1.32	3.86	9.58	4.26
DiEn	1.96	3.47	0.85	2.43	6.53	2.72
DiFs	0.83	1.34	0.38	1.19	2.28	1.26
Ну	28.06	34.09	20.29	26.85	21.95	22.80
HyEn	19.75	24.58	14.00	18.05	16.27	15.58
HyFs	8.31	9.51	6.29	8.80	5.67	7.22
Ol	0.00	0.12	0.00	0.00	5.71	3.89
OlFo	0.00	0.08	0.00	0.00	4.12	2.57
OlFa	0.00	0.03	0.00	0.00	1.59	1.32
Mt	1.94	2.23	1.48	2.40	2.36	2.25
Hm	0.00	0.00	0.00	0.00	0.00	0.00
I1	1.44	1.44	1.29	2.54	2.39	1.94
Ар	0.56	0.69	0.54	0.69	1.13	1.12
C_I	37.23	47.89	25.60	39.27	50.79	39.11
D_I	39.24	26.78	52.52	31.96	27.08	37.91

Tabela 6.2 – Composições normativas CIPW relativas às análises mostradas na tabela 6.1 (continuação...)

AMOSTRA	D-34	D-35	D-36	D-38	D-39	D-40
	JOTUNITO	JOTUNITO	CHARNO-ENDERBITO	NORITO	JOTUNITO	CHARNOCKITO
Q	2.60	4.08	37.09	0.00	3.04	36.57
С	0.00	0.00	0.75	0.00	0.00	0.00
Or	6.25	7.71	11.37	5.53	6.45	27.47
Ab	24.66	27.37	46.52	25.01	25.42	31.91
An	24.88	24.23	3.09	25.21	24.10	2.82
Ne	0.00	0.00	0.00	0.00	0.00	0.00
Lc	0.00	0.00	0.00	0.00	0.00	0.00
Ac	0.00	0.00	0.00	0.00	0.00	0.00
Ns	0.00	0.00	0.00	0.00	0.00	0.00
Di	6.07	4.29	0.00	7.27	6.21	0.37
DiWo	3.15	2.22	0.00	3.78	3.22	0.18
DiEn	2.09	1.44	0.00	2.54	2.14	0.02
DiFs	0.83	0.63	0.00	0.95	0.85	0.17
Ну	31.37	28.15	0.99	33.62	30.40	0.66
HyEn	22.48	19.57	0.25	23.73	21.79	0.08
HyFs	8.89	8.58	0.74	8.89	8.61	0.58
Ol	0.00	0.00	0.00	0.26	0.00	0.00
OlFo	0.00	0.00	0.00	0.18	0.00	0.00
OlFa	0.00	0.00	0.00	0.08	0.00	0.00
Mt	2.05	1.98	0.13	2.07	2.04	0.14
Hm	0.00	0.00	0.00	0.00	0.00	0.00
I1	1.49	1.53	0.04	1.42	1.61	0.04
Ар	0.64	0.67	0.02	0.61	0.73	0.02
C_I	40.97	35.94	1.16	43.65	40.26	1.21
D_I	33.51	39.16	94.98	30.54	34.90	95.95

Tabela 6.2 – Composições normativas CIPW relativas às análises mostradas na tabela 6.1 (continuação..).

AMOSTRA	D-42	D-44	D-45	D-46	D-47	D-48
	JOTUNITO	JOTUNITO	JOTUNITO	NORITO	JOTUNITO	JOTUNITO
Q	4.51	0.14	0.00	2.16	6.02	0.00
С	0.00	0.00	0.00	0.00	0.00	0.00
Or	5.69	5.95	7.90	3.09	7.33	5.65
Ab	18.61	23.41	20.52	26.31	27.54	21.63
An	22.00	23.64	20.64	28.34	24.09	25.08
Ne	0.00	0.00	0.00	0.00	0.00	0.00
Lc	0.00	0.00	0.00	0.00	0.00	0.00
Ac	0.00	0.00	0.00	0.00	0.00	0.00
Ns	0.00	0.00	0.00	0.00	0.00	0.00
Di	13.83	8.50	10.68	9.29	4.12	10.53
DiWo	7.15	4.41	5.56	4.77	2.14	5.48
DiEn	4.55	2.91	3.79	2.84	1.39	3.74
DiFs	2.13	1.18	1.33	1.68	0.60	1.31
Ну	31.54	33.93	32.58	25.35	26.72	30.43
HyEn	21.46	24.13	24.12	15.92	18.65	22.53
HyFs	10.08	9.80	8.46	9.42	8.07	7.90
Ol	0.00	0.00	3.09	0.00	0.00	2.36
OlFo	0.00	0.00	2.22	0.00	0.00	1.70
OlFa	0.00	0.00	0.86	0.00	0.00	0.66
Mt	2.38	2.27	2.30	2.51	1.87	2.14
Hm	0.00	0.00	0.00	0.00	0.00	0.00
11	1.19	1.52	1.67	2.28	1.48	1.60
Ар	0.27	0.65	0.62	0.67	0.83	0.58
C_I	48.93	46.22	50.31	39.43	34.19	47.06
D_I	28.80	29.44	28.43	31.56	40.89	27.28

Tabela 6.2 – Composições normativas CIPW relativas às análises mostradas na tabela 6.1. (continuação...)

AMOSTRA	D-49-A	D-49-B	D-50	D-51	D-52	D-60
	NORITO	NORITO	NORITO	NORITO	NORITO	JOTUNITO
Q	0.01	0.00	0.00	0.00	0.00	0.00
С	0.00	0.00	0.00	0.00	0.00	0.00
Or	5.46	5.55	4.86	5.67	4.98	6.04
Ab	25.13	30.35	24.65	26.73	22.20	26.78
An	23.88	20.85	24.94	24.17	26.12	24.01
Ne	0.00	0.00	0.00	0.00	0.00	0.00
Lc	0.00	0.00	0.00	0.00	0.00	0.00
Ac	0.00	0.00	0.00	0.00	0.00	0.00
Ns	0.00	0.00	0.00	0.00	0.00	0.00
Di	7.36	8.65	7.68	7.42	8.82	7.84
DiWo	3.83	4.49	4.00	3.84	4.58	4.06
DiEn	2.57	3.00	2.70	2.50	2.99	2.64
DiFs	0.96	1.16	0.98	1.08	1.25	1.14
Ну	33.55	24.61	33.19	30.59	31.59	29.31
HyEn	24.42	17.75	24.37	21.37	22.26	20.49
HyFs	9.12	6.86	8.82	9.22	9.33	8.82
Ol	0.00	5.38	0.45	1.02	1.57	1.69
OlFo	0.00	3.77	0.32	0.69	1.07	1.15
OlFa	0.00	1.61	0.13	0.33	0.50	0.55
Mt	2.15	2.16	2.10	2.20	2.34	2.20
Hm	0.00	0.00	0.00	0.00	0.00	0.00
11	1.64	1.65	1.52	1.45	1.64	1.47
Ар	0.83	0.80	0.61	0.76	0.74	0.65
C_I	44.69	42.45	44.94	42.67	45.96	42.52
D_I	30.60	35.90	29.51	32.39	27.18	32.82

Tabela 6.2 – Composições normativas CIPW relativas às análises mostradas na tabela 6.1 (continuação...)

AMOSTRAS	Rb/Sr	K/Rb	Sr/Y	Sr/Sm	La/Nb
D-21 (jotunito)	0.06	212.54	48.90	158.93	4.29
D-52 (NORITO)	0.02	340.35	72.39	259.74	8.45
D-48 (jotunito)	0.04	286.24	64.02	243.27	6.02
D-30 (jotunito)	0.09	205.88	38.48	137.34	4.06
D-46 (NORITO)	0.01	485.55	70.97	281.73	3.52
D-14 (NORITO)	0.03	267.26	86.55	267.29	6.49
D-60 (jotunito)	0.02	390.96	68.45	271.79	10.37
D-51 (NORITO)	0.02	375.49	67.21	258.97	10.39
D-45 (jotunito)	0.04	363.31	69.33	257.81	7.36
D-50 (NORITO)	0.02	369.97	78.18	292.55	8.74
D-44 (jotunito)	0.03	287.66	83.51	276.63	5.21
D-38 (NORITO)	0.03	300.84	76.97	269.39	7.17
D-49 A (NORITO)	0.03	272.27	79.30	284.53	8.44
D-20 (NORITO)	0.01	475.15	92.41	335.00	3.16
D-49 B (NORITO)	0.03	277.91	67.60	297.88	8.91
D-04 (NORITO)	0.00	1436.54	111.77	367.77	4.67
D-42 (jotunito)	0.06	273.69	27.87	134.05	5.23
D-2 A (jotunito)	0.04	320.13	76.86	226.73	14.64
D-34 (jotunito)	0.03	267.69	86.40	285.39	3.99
D-39 (jotunito)	0.03	283.41	86.32	273.33	6.83
D-01 (jotunito)	0.03	417.91	69.76	276.84	6.00
D-35 (jotunito)	0.04	250.53	87.04	294.05	6.42
D-13 (jotunito)	0.04	272.11	84.50	253.49	5.95
D-47 (jotunito)	0.04	285.83	79.37	284.79	6.50
D-17 (jotunito)	0.11	165.92	85.05	270.61	2.67
D-2 F (charno-enderbito)	2.69	232.26	0.74	13.27	0.15
$D-2 \ C$ (charno-enderbito)	0.57	375.03	1.81	16.00	2.51
D-2 B (CHARNO-ENDERBITO)	1.66	249.55	0.69	6.97	0.51
D-40 (CHARNOCKITO)	4.34	227.16	1.04	8.06	1.22
D-36 (CHARNO-ENDERBITO)	0.68	313.96	2.50	32.09	0.34

Tabela 6.3 – Razões geoquímicas para as rochas do Complexo Pedra Aguda.

AMOSTRAS	Zr/Hf	Nb/Ta	La/Yb	P_2O_5/TiO_2	Mg #
D-21 (jotunito)	41.67	20.83	18.36	0.41	70.36
D-52 (NORITO)	43.89	25.80	25.95	0.39	68.18
D-48 (jotunito)	46.00	28.90	20.47	0.32	71.66
D-30 (jotunito)	41.63	20.25	23.01	0.51	65.14
D-46 (NORITO)	42.56	17.90	20.77	0.26	58.97
D-14 (NORITO)	41.19	29.60	21.57	0.42	70.13
D-60 (jotunito)	48.15	24.20	29.88	0.39	67.76
D-51 (NORITO)	46.67	22.80	27.24	0.46	67.78
D-45 (jotunito)	43.60	26.90	23.57	0.33	71.76
D-50 (NORITO)	44.94	23.80	26.33	0.35	71.12
D-44 (jotunito)	43.35	38.40	24.39	0.37	68.98
D-38 (NORITO)	43.50	32.20	23.81	0.37	70.60
D-49 A (NORITO)	46.33	27.00	26.82	0.44	70.32
D-20 (NORITO)	47.30	20.03	20.43	0.24	62.63
D-49 B (NORITO)	52.71	13.25	24.84	0.42	59.35
D-04 (NORITO)	42.24	20.15	20.00	0.28	64.41
D-42 (jotunito)	38.46	16.05	11.91	0.20	66.67
D-2 A (jotunito)	35.31	14.00	19.71	0.41	68.92
D-34 (jotunito)	39.50	13.55	25.41	0.38	69.28
D-39 (jotunito)	42.22	18.60.	28.54	0.40	68.94
D-01 (jotunito)	43.31	23.15	31.59	0.39	68.82
D-35 (jotunito)	41.30	21.95	29.07	0.38	66.77
D-13 (jotunito)	41.13	21.60	28.56	0.34	67.84
D-47 (jotunito)	44.57	19.15	28.95	0.49	66.99
D-17 (jotunito)	39.87	14.57	27.41	0.36	65.68
D-2 F (CHARNO-ENDERBITO)	16.81	28.82	0.78	0.50	11.01
D-2 C (CHARNO-ENDERBITO)	19.76	14.20	3.88	0.29	15.39
D-2 B (CHARNO-ENDERBITO)	16.17	16.37	2.89	0.50	9.26
D-40 (CHARNOCKITO)	15.27	14.48	3.18	0.50	11.65
D-36 (CHARNO-ENDERBITO)	19.48	38.10	1.73	0.50	25.13

Tabela 6.3 – Razões geoquímicas para as rochas do Complexo Pedra Aguda (continuação...)

7 – <u>GEOBAROMETRIA E GEOTERMOMETRIA</u>

Os minerais utilizados para a determinação das pressões e temperaturas metamórficas do Complexo Pedra Aguda, foram selecionados de jotunitos e noritos.

A associação mineralógica constituinte destes tipos petrográficos corresponde a plagioclásio (Pl) + ortopiroxênio (Opx) + clinopiroxênio (Cpx) + hornblenda (Hbl) + biotita (Bit) + quartzo (Qtz).

A presença de biotita e hornblenda nestas rochas representa uma fase hidratada subordinada, indicando em grande parte condições de retrometamorfismo.

As condições de pressão e temperatura atuantes no complexo são obtidas aplicando-se o geobarômetro Al – hornblenda e os geotermômetros Ti – hornblenda, Hbl-plagioclásio e Opx. Outras metodologias existentes na literatura, utilizando pares minerais mais adequados aos tipos petrográficos em estudo, não puderam ser aplicadas ao complexo, devido a falta de dados.

7.1 – <u>GEOBARÔMETRO Al – HORNBLENDA</u>.

O geobarômetro Al – hornblenda, originalmente aplicado a rochas graníticas, é aqui aplicado ao jotunitos e noritos. Neste geobarômetro, os conteúdos de Al total dos anfibólios, calculados para 23 O, obedecem a uma relação linear com a pressão ($P[^+-1Kbar] = -4.76 + 5.64 \text{ Al}^{tot.}$). O Quadro 7.1 mosrta os valores encontrados nas diferentes calibrações para todas as hornblendas com Al^{IV} + Al^{VI} variando de 1.130 a 1.427 para os jotunitos e de 1.475 a 1.519 para os noritos.

LITÓTIPO / AMOSTRA	JOTUNITO (D-2 A e D-13)		NORITO (D-20)	
CALIBRAÇÃO Al - hbl	Al (total)	P (Kbar)	Al (total)	P (Kbar)
HAMMARSTROM e ZEN(1986)	1.130 - 1.427	1.76 - 3.25	1.475 – 1.519	3.50 - 3.72
HOLLISTER et al. (1987)	1.130 - 1.427	1.61 – 3.29	1.475 – 1.519	3.56 - 3.81
JOHNSON e RUTHERFORD (1988)	1.130 - 1.427	1.30 - 2.57	1.475 – 1.519	2.80 - 2.96
BLUNDY e HOLLAND (1990)	1.130 - 1.427	1.52 - 2.97	1.475 – 1.519	3.40 - 3.75

Quadro 7.1 – Geobarômetro Al – Hornblenda em jotunitos e noritos.

Os valores de pressão obtidos para os noritos são sempre mais elevados que para os jotunitos.

7.2 – <u>GEOTERMÔMETRO Ti – HORNBLENDA</u>.

O geotermômetro Ti –hbl (Otten, 1984), estabelece uma função linear entre as proporções de Ti contidas nos sítios cristalográficos tetraedral e octaedral do mineral calculado para 23 O, e a pressão sob a qual o mesmo se forma. Desta forma, para temperaturas maiores que 970 °C, a relação estabelecida é $T(^{\circ}C) = 273 \times (Ti) + 877 \text{ e}$ para temperaturas inferiores a 970 °C, a relação é $T(^{\circ}C) = 1204 \times (Ti) +545$. Os valores obtidos para todas as hornblendas com, Ti entre 0.142 e 0.190 e 0.196 e 0.213 para jotunitos e noritos respectivamente, encontram-se no Quadro 7.2.

Quadro 7.2 – Geotermômetro Ti – hornblenda em jotunitos e noritos.

LITÓTIPO / AMOSTRA	JOTUNITO (D-2 A e D-13)		NORITO (D-20)	
CALIBRAÇÃO Ti - hbl	Ti (total)	T (° C)	Ti (total)	T (° C)
OTTEN (1984)	0.142 - 0.190	715.97 a 773.76	0.196 - 0.213	780.98 a 801.45

7.3 - GEOTERMÔMETRO HBL - PLAGIOCLÁSIO.

O geotermômetro hbl – plagioclásio é baseado na troca Na – Si = Ca – Al

O Quadro 7.3 mostra os valores obtidos de acordo com a calibração de Blundy e Holland (1990) para pressões estimadas entre 2 e 4 Kbar.

Quadro 7.3 – Geotermômetro Hbl – pl em jotunitos e noritos.

LITÓTIPO / AMOSTRA	JOTUNITO (D-2 A e D-13)	NORITO (D-20)
CALIBRAÇÃO Hbl - pl	T (° C)	T (° C)
BLUNDY e HOLLAND (1990)	671.04 - 778.81	738.14 – 792.22

7.4 – <u>GEOTERMÔMETRO OPX.</u>

Este geotermômetro é baseado na solubilidade de Ca-Al e Cr-Al no piroxênio. O Quadro 7.4 apresenta as calibrações de Witt-Eickschen e Seck (1991) e de Brey e Kohler (1990), novamente calculadas para valores de pressão estimados entre 2 e 4 Kbar.

Quadro 7.4 – Geotermômetro Opx em jotunitos e noritos.

LITÓTIPO / AMOSTRA	JOTUNITO (D-2 A e D-13)	NORITO (D-04 e D-20)
CALIBRAÇÃO OPX	T (° C)	T (° C)
BREY e KOHLER (1990)	832.20 - 1059.80	862.06 - 1186.50
WITT-EICKSCHEN e SECK (1991)	651.54 - 813.05	651.07 – 715.53

Os valores de temperatura obtidos na maioria das calibrações dos diferentes geotermômetros aplicados, bem como aqueles de pressão obtidos pelo geobarômetro Al – hbl, mostram-se coerentes e permitem estabelecer um intervalo de temperatura entre 650 e 800 ⁰C e de pressão entre 2 e 4 Kbar para o metamorfismo do Complexo Pedra Aguda, com exceção daqueles valores de temperatura fornecidos na calibração de Brey e Kohler (1990) (830 a 1200 ⁰C) do geotermômetro Opx (Quadro 7.4), que se mostram sempre muito elevados, tanto para jotunitos como para noritos, portanto incoerentes com os demais valores e talvez mais próximos dos valores de pico metamórfico.

As condições metamórficas de alta temperatura e baixa pressão requerem uma ambiência tectônica especial, que crie em escala regional, um alto fluxo de calor em profundidades moderadas. Este é um fenômeno comum em vastas áreas migmatíticas arqueanas, causado por geotermas extremamente altas na litosfera (Nisbet, 1987). Em ambientes de crosta jovem, altas temperaturas e baixas pressões parecem estar restritas a cinturões magmáticos em domínios continentais e a centros de dispersão e arcos de ilhas em ambiente oceânico. Cinturões magmáticos na crosta continental estão geralmente associados com zonas de subducção ou áreas de extensão proeminentes (Lachenbruch e Morgan, 1990 ; Atherton, 1990).

8 – <u>GEOCRONOLOGIA</u>

Neste capítulo, são apresentados os resultados do estudo geocronológico realizado pelo método de evaporação de Pb em monocristais de zircão.

O estudo geocronológico, foi realizado nas amostras D-01 (jotunito) e D-52 (norito) do Complexo Pedra Aguda, pelo Laboratório de Geologia Isotópica (PARÁ – ISO) do Centro de Geociências da Universidade Federal do Pará (UFPA) tendo como analista MsC Cleris R. Sachett e sob supervisão do Prof. Dr. Cândido A. V. Moura.

O estudo consiste na determinação da idade aparente ²⁰⁷Pb / ²⁰⁶Pb segundo o método da evaporação de Pb em monocristais de zircão desenvolvido por Kober (1986-1987). As análises foram realizadas em um espectrômetro de massa FINNIGAN MAT 262.

8.1 – METODOLOGIA E TRATAMENTO DE DADOS

A metodologia empregada pelo Laboratório de Geologia Isotópica (PARÁ-ISO) encontra-se descrita no item 2.5 do capítulo referente a metodologia.

Os resultados são apresentados com desvios a 2σ e as correções do Pb comum são feitas mediante uso do modelo de evolução do Pb em estágio duplo proposto por Stacey e Kramers (1975), utilizando a razão 204 Pb / 206 Pb.

Os dados obtidos são tratados estatisticamente segundo critérios metodológicos estabelecidos no PARA – ISO. Entre eles, destacam-se os seguintes:

* Os blocos com razões isotópicas ²⁰⁴Pb / ²⁰⁶Pb superiores a 0,0004 são desprezados, para tornar mínima a correção de Pb de contaminação ou inicial.

* São eliminados os blocos com desvios superiores a 2σ em relação à média das idades dos zircões.

* Faz-se, além disso, a eliminação subjetiva, onde são desprezados blocos, etapas de evaporação ou zircões que apresentem idades discordantes da média das idades obtidas nas temperaturas mais altas da maioria dos zircões.

8.2 – <u>RESULTADOS ANALÍTICOS</u>

AMOSTRA D-01: Para essa amostra foram analisados 12 cristais, entretanto, apenas 1 cristal forneceu Pb suficiente para análise. O resultado obtido para esse cristal é mostrado na Fig. 8.1 A e na Tabela 8.1. Abaixo é descrito apenas esse cristal.

* Zircão n 0 01 – cristal prismático, transparente, fraturado, levemente quebrado na superfície, castanho claro, límpido C:L = 3:1.

Esse cristal forneceu três blocos de razões 207 Pb / 206 Pb e uma idade média de 594 \pm 12 Ma.

Figura 8.1 – Diagrama Idade (Ma) versus Etapas de evaporação dos cristais de zircão da amostra D-01. Círculo cheio – bloco da razões isotópicas utilizado para cálculo da idade; Desvio analítico a 2 σ.

Tabela 8.1 – Resultados analíticos dos zircões da amostra D-01. (c) Razão ²⁰⁷Pb/²⁰⁶Pb corrigida do Pb comum.

Zircão	Temp. de	Razões	²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	$({}^{207}Pb/{}^{206}Pb)c$	Idade
	Evap.	Utiliz/Total	+-2 <i>σ</i>	+-2 σ	+- 2 <i>σ</i>	+- 2σ	(Ma)
	(°C)						
D1/1	1500	54/54	0,000054 ⁺ -9	0,11757 ⁺ -55	0,06055+-29	0,05972+-34	594+-12
	Total	54/54				Idade Média	594 ⁺ -12

AMOSTRA D-52: Para essa amostra foram analisados 14 cristais de zircão, dentre os quais, apenas os cristais 9 e 12 forneceram Pb suficiente para a análise. Os resultados obtidos para esses cristais são mostrados na Fig. 8.2 e Tabela 8.2. Abaixo estão descritos apenas esses cristais.

Zircão n⁰ 09 – cristal de tamanho pequeno, prismático, transparente, límpido, sem inclusões ou fraturas. C : L = 3:1. Zircão n⁰ 12 – cristal semelhante ao anterior.

Os cristais acima descritos forneceram uma idade média de 596 \pm 8 Ma.

Figura 8.2 – Diagrama Idade (Ma) versus Etapas de evaporação dos cristais de zircão da amostra D-52. Círculo cheio – bloco de razões isotópicas utilizado para o cálculo de idade; Desvio analítico a 2σ.

Bessa, M.D.M.R. - Complexo Pedra Aguda : Caracterização ...

Tabela 8.2 – Resultados analíticos dos zircões da amostra D-52. (c) Razão ²⁰⁷Pb/²⁰⁶Pb corrigida do Pb comum.

Zircão	Temp.	Razões	²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	(²⁰⁷ Pb/ ²⁰⁶ Pb) c	Idade
	de Evap.	Utiliz./Total	+- 2 <i>σ</i>	+- 2σ	+- 2 <i>σ</i>	+- 2σ	(M a)
	(⁰ C)						
D52/9	1450	90/90	0,000189+-14	0,12514+-45	0,006248+-	0,05968+-15	592+-6
					14		
	1500	84/84	0,000131+-5	0,12056 ⁺ -31	0,06146 ⁺ -12	0,05959+-14	589 ⁺ -5
D52/12	1550	88/88	0,000081+-7	0,224663+-103	0,06119+-10	0,05995+-12	602 ⁺ -4
	Total	262/262				Idade Média	595 ⁺ -8

8.3 – DISCUSSÃO E INTERPRETAÇÃO DOS RESULTADOS

O método Pb – Pb por evaporação em monocristal de zircão baseia-se no mecanismo de decaimento dos isótopos de U em isótopo de Pb. A grande utilização do zircão como geocronômetro deve-se ao fato de que este mineral é capaz de preservar informações isotópicas desde o momento de sua cristalização (Lancelot et al. 1983, Page e Bell, 1985). Além disso, ao contrário de minerais como a galena, a pirita e os feldspatos, o zircão possui alta razão U / Pb, não existindo praticamente nenhum Pb inicial. Essa característica, juntamente com o fato de que as constantes de desintegração dos isótopos de U são conhecidas com bastante precisão, faz com que o zircão seja um ótimo geocronômetro.

Os resultados geocronológicos obtidos por este método apresentam, em geral, valores similares às idades fornecidas pelo método U / Pb em zircão (Kober, 1987; Andsdell e Kyser, 1991). Dessa forma, as idades Pb / Pb em zircão podem ser interpretadas como indicativas da idade de cristalização do zircão. Porém, como se tratam de idades aparentes 207 Pb / 206 Pb, é importante ressaltar que o resultado geocronológico pode ser menos exato quando comparado ao método U / Pb por não se ter uma referencia como a curva concórdia (Gaudette et al. 1998).

No caso de rochas ortoderivadas metamorfisadas, pelo método de evaporação de Pb é interpretada como a idade mínima de cirstalização do protólito igneo, desde que o zircão seja de origem magmática. Essa interpretação é baseada em estudos geocronológicos utilizando o sistema U – Pb em zircões de rochas ígneas que sofreram deformação e metamorfismo, os quais sugerem que as idades obtidas geralmente representam idades de cristalização e colocação do protólito ígneo (Page e Bell, 1985; Evans e Fischer, 1986). Essa interpretação baseia-se ainda no fato de que, até o momento, as pertubações significativas do sistema isotópico U – Pb de porções internas de cristais de zircão têm sido reconhecidas apenas em cristais que foram submetidos ao metamorfismo do fácies granulítico (Paquette et al. 1994), hidrotermalismo ou intensa metamitização.

Desta forma, as idades ²⁰⁷Pb / ²⁰⁶Pb de 594 \pm 12 Ma e de 595 \pm 8 Ma para as rochas gabroicas do Complexo Pedra Aguda, muito embora tenham sido conseguidas em alguns poucos cristais de zircão, mostram uma consistência nos resultados, o que a princípio, gera um bom grau de confiabilidade. Visto que os efeitos de alta temperatura e pressão durante metamorfismo do fácies granulítico provavelmente contribuiram para uma possível recristalização destes zircões, acredita-se que as idades ²⁰⁷Pb / ²⁰⁶Pb obtidas indiquem aproximadamente, a idade de metamorfismo das rochas máficas do complexo. Idades similares (573 \pm 35 Ma) são fornecidas por Fetter (1999), para indicar a época do metamorfismo de granulitos máficos (enderbitos) do Domínio Ceará Central.

9 - <u>DISCUSSÃO E CONCLUSÕES</u>

O Complexo Pedra Aguda é um corpo de forma elipsoidal, cujo eixo maior mede aproximadamente 11 km e o menor 7 Km. É constituído por rochas granulíticas predominantemente intermediárias, ocorrendo ainda tipos litológicos básicos e ácidos. As associações litológicas básicas e intermediárias mostram características petrográficas e químicas bastante semelhantes e são representadas por jotunitos, que equivalem composicionalmente a quartzo-monzodioritos e monzodioritos e por noritos que equivalem a quartzo-dioritos, todos com hiperstênio. Por sua vez, os termos ácidos são representados por charno-enderbitos e charnockitos, correspondentes em composição a granodioritos e monzogranitos respectivamente.

Critérios de campo, como a presença de enclaves do Complexo Pedra Aguda inseridos em rochas gnáisicas - migmatíticas (Figura 9.1), juntamente com critérios mineralógicos, tais como: presença de plagioclásio sódico, hiperstênio e salita nos jotunitos e noritos, presença de mesopertitas, hiperstênio, granada e sillimanita nos charno-enderbitos e charnockitos, e a deformação observada nestas rochas, principalmente em cristais de biotitas, plagioclásios e quartzo são utilizados para classificar as rochas do complexo como granulíticas. Um outro critério importante é a presença frequente de coroas de anfibólio em torno de orto e clinopiroxênios. Coroas de reação em rochas básicas e ultrabásicas metamorfisadas são bem conhecidas e frequentemente descritas como respostas ao metamorfismo no fácies anfibolito ou granulito (Griffin e Heier, 1973), entretanto, os autores diferem consideravelmente quanto ao tipo de metamorfismo atuante.

Figura 9.1 – Enclaves noríticos do Complexo Pedra Aguda em gnaisses migmatíticos, preservando sua estrutura ígnea.

Alguns propõem uma origem metassomática, outros sugerem um metamorfismo termal e há ainda os que recorrem ao metamorfismo regional. Apesar da diversidade, um ponto em comum tem sido que o metamorfismo atuante é de natureza isoquímica dentro do volume de uma amostra de mão sob condições de altas temperaturas e baixas pressões. É interessante salientar que apesar do metamorfismo sofrido, a grande maioria das rochas mantém preservada a sua textura ígnea.

Regionalmente, convencionou-se denominar D2 a deformação caracterizada por uma foliação com mergulhos suaves, quase senmpre em torno de 30^0 , que caracteriza a chamada tectônica tangencial ou tectônica de empurrões. Esta foliação na região de Aracoiaba – Baturité mostra-se com direção que varia desde 60^0 Az a E-W e contorna o corpo norítico que se mostra alongado segundo a direção N-S, sugerindo a época de "emplacement" pré D2. Os corpos charnockíticos do interior do complexo, exibem esta foliação, enquanto as rochas predominantes (jotunitos e noritos) no complexo exibem uma estrutura aparentemente maciça, foliação incipiente, mas ao microscópio são notáveis os indícios de deformação plástica, especialmente em biotitas e plagioclásios, sendo estes pouco ou nada observadas em piroxênios. Assim, porque a trama da rocha é grandemente sustentada por piroxênios e plagioclásios, a textura ígnea é fortemente preservada. Em contraste, as rochas que os rodeiam, de natureza diorítica – tonalítica com a trama grandemente suportada por quartzo e biotita, exibem uma forte deformação plástica, com indícios variáveis de fusão parcial.

Os dados de química mineral revelam que a composição dos minerais dos jotunitos assemelha-se aquela dos noritos e que em ambos os tipos são observados hiatos composicionais, principalmente nos plagioclásios, ortopiroxênios e biotitas, sugerindo duas gerações mineralógicas distintas, uma primária e outra secundária, resultante de reações metamórficas. O plagioclásio dominante nos jotunitos e noritos é do tipo andesina (An ₄₀₋₅₀), ocorrendo ainda poucos pontos no campo da labradorita (An ₅₅₋₆₀), sem contudo haver uma passagem gradacional entre os dois tipos. Os ortopiroxênios mostram uma maior variação composicional que os clinopiroxênios,

situando-se nos campos do hiperstênio e da bronzita, também mostrando uma lacuna composicional entre os dois tipos. Os anfibólios não mostram grandes variações composicionais. São anfibólios cálcicos e classificam-se como hornblenda magnesiana. Já as biotitas plotam próximo ao campo das flogopitas, sendo aquelas dos noritos mais enriquecidas em ferro e titânio.

Os dados de química de rocha e mineral, aliados aos dados de campo e petrográficos, indicam um protólito de natureza ígnea para as rochas do complexo, embora os padrões de elementos terras raras e multi-elementos, sugiram fontes diferentes para jotunitos e noritos, com relação a charno-enderbitos e charnockitos.

As rochas jotuníticas e noríticas, mostram elevados números de magnésio (Mg # >58) e altos conteúdos de Ni e Cr, o que sugere uma fonte mantélica para elas. Por outro lado, apresentam altas concentrações de Sr, Ba e "LREE", indicando que a fonte experimentou enriquecimento como resultado da interação crosta - manto e/ou metassomatismo mantélico.

O relativo enriquecimento em "LREE" e Sr sobre "HREE" e "HFSE" parece ser uma característica de peridotitos contendo carbonatos e de carbonatos do manto e uma assinatura de metassomatismo relacionado a carbonato são as altas razões Sr/Sm (134.05 - 367.77), La/Nb (2.67 - 14.64), Zr/Hf (35.31 - 48.15) e Nb/Ta (13.25 - 38.40)(Tabela 6.3). Os valores relativamente baixos de Nb, Zr e Hf podem ser explicados, se rutilo permanecer na fonte durante a fusão. Segundo Green e Walace (1988), rutilo e ilmenita não são facilmente dissolvidos em líquidos ricos em carbonato.

De acordo com resultados experimentais de Baker e Wyllie (1992), baixos percentuais de fusão de um manto que sofreu metassomatismo carbonático são esperados mostrarem altas razões P_2O_5 / TiO₂, o que não acontece com as rochas jotuníticas e noríticas do complexo, que mostram razões P_2O_5 / TiO₂ entre 0.20 e 0.51. Desta forma, metassomatismo carbonático parece não ter sido o mecanismo atuante na geração destas rochas, pelo menos não isoladamente.

Por outro lado, estas rochas apresentam características geoquímicas tais como: baixos "HREE" (Yb \leq 1.46) e Y (\leq 23.2), altos valores de Sr (> 496 ppm) e consequentemente altas razões Sr/Y (>38.48) e La/Yb (18.36 a 31.59). Estas características assemelham-se àquelas de magmas adakíticos e são, segundo Martin (1999) e Drummond et al. (1996) indicativas de uma fonte máfica onde granada e/ou hornblenda são fases residuais. A ausência de plagioclásio residual concorre para o enriquecimento em Sr. Os jotunitos e noritos mostram ainda elevados números de magnésio e altos teores de Ni ,os quais são interpretados como refletindo a interação entre o magma adakítico ascendente, gerado no "slab" subductado e o manto. Vale ressaltar que o grau de interação entre magmas adakíticos e o manto depende de vários fatores, tais como : velocidade de ascenção, ângulo de subducção, geoterma do "slab" e profundidade da fusão e espessamento da litosfera suprajacente. A figura 9.2 é um plot Sr / Y x Y (Maury et al., 1996) para os jotunitos e noritos do Complexo Pedra Aguda mostrando o campo esperado para líquidos do "slab" e magmas derivados do manto. Estes campos discriminam os magmas cálcio- alcalinos derivados do manto e os líquidos do "slab" ou adakitos. A distinção entre eles é baseada nos mais altos teores de Sr e mais baixos teores de Y e "HREE" dos adakitos.

Já os charno-enderbitos e charnockitos, apresentam um padrão de distribuição de elementos terras raras plano, com relativamente altas concentrações de "HREE', quando comparado com rochas similares. Esta feição, juntamente com uma extrema anomalia negativa de Eu e baixo conteúdo de Sr, sugere que, ou estas rochas representam um magma residual altamente evoluído, após cristalização fracionada de plagioclásio e fases contendo "LREE" ou, líquidos resultantes da fusão de rochas fontes, que retiveram plagioclásio e fases enriquecidas em "LREE", tais como apatita e titanita.

A restrição no número de análises químicas em minerais, impossibilita o uso de geotermômetros e geobarômetros mais adequados aos tipos petrográficos em estudo. Outro fato é que apenas as amostras de jotunitos e noritos foram analisadas, ficando excluídas as amostras de charno-enderbitos e charnockitos, que contém granada associada a piroxênio, o que por si só já seria um indicativo de pressões mais elevadas. Mesmo assim a termobarometria foi aplicada, obtendo-se valores de temperatura entre 650 e 800 ° C e de pressão entre 2 e 4 kbar para o metamorfismo do complexo. Estes valores de pressão obtidos são valores mínimos, visto que, foram obtidos com geobarômetro a partir de anfibólio cálcicos, minerais estes formados em ambientes de baixa pressão. A ocorência de fases hidratadas nestas rochas, sugere equilíbrio na interface anfibolito-granulito. Os valores de temperatura obtidos no geotermômetro Opx, na calibração de Brey e Kohler (1990), consideravelmente mais elevados que a média sugere proximidade aos valores de pico metamórfico.

Os resultados geocronológicos foram obtidos pelo método da evaporação de Pb em monocristais de zircão. O estudo geocronológico foi realizado em duas amostras, uma de jotunito e outra de norito e forneceu idades de 594 \pm 12 Ma e de 595 \pm 8 Ma. Estas idades, muito embora tenham sido conseguidas em poucos cristais de zircão, mostram uma consistência nos resultados, o que a princípio gera um bom grau de confiabilidade. Portanto, acredita-se que as idades ²⁰⁷Pb / ²⁰⁶ Pb obtidas, indiquem aproximadamente a idade do metamorfismo das rochas máficas do complexo, visto que, perturbações significativas no sistema U – Pb de porções internas de cristais de zircão tem sido reconhecidas em cristais que foram submetidos ao metamorfismo do fácies granulito.

Figura 9.2 – Diagrama Sr / Y x Y para jotunitos e noritos mostrando os campos esperados para líquidos do "slab" e magmas derivados do manto (Maury et al., 1996).

10 - <u>REFERÊNCIAS BIBLIOGRÁFICAS</u>.

- ANDSDELL, K.M. & KYSER, T.K. 1991. Plutonism, deformation and metamorfism in Proterozoic Flin Flon Greenstone belt Canadá. Limits on timing by the zircon Pb evaporation technique Geology, **18** (**5**) : 518 521.
- ARTHAUD, M.H.; VASCONCELOS, A. M.; NOGUEIRA NETO, J.A.; OLIVEIRA, F.V.C; PARENTE, C.V.; MONIÉ, P.; LIÉGEOIS, J.P.; CABY, R.; FETTER, A.H.1998. Main Structural Features of Precambrian Domains From Ceará (NE Brazil). In: DEGEO/UFOP IBTA, International Conference on Basement Tectonics, 14th, Ouro Preto, Abstracts, 84 85.
- ATHERTON, M.P. 1990. The Coastal Batholith of Peru: the product of rapid recycling of "new" crust formed within rifted continental margin. Geological Journal, **25**, 337-349.
- BAKER, M.B. & WYLLIE, P.J. 1992. Hight pressure apatite solubility in carbonate rich liquids : implications for mantle metassomatism. Geochim. Cosmochim. Acta 56. 3409 – 3422.
- BATCHELOR, R.A. & BOWDEN, P. 1985. Petrogenetic interpretation of granitoid rocks series using multicationic parameters. Chemical Geology, **45**: 43 55.
- BLUNDY, J.D. & HOLLAND, T.J.B. 1990. Calcic anphibole equilibria and a new anphibole- plagioclase geothermometer. Contributions to Mineralogy and Petrology, **104**: 208 224.
- BRAGA, A. de P.G.; PASSOS, C.A. B.; SOUZA, E.M. de; FRANÇA, J.B.de; MEDEIROS, M. e F.; ANDRADE, V.A.1977. Projeto Fortaleza. Recife, DNPM / CPRM, V.1.
- BREY, G.P. & KOHLER, T., 1990. Geothermobarometry in four phase lherzolites, part II: new thermobarometers, and practical assessment of existing thermobarometers: Jour. Petrology, v. 31, no 6, p. 1353 – 1378.

- BRITO NEVES, B.B. 1975. Regionalização tectônica do Pré-cambriano Nordestino. Instituto de Geociências, Universidade de São Paulo, São Paulo, Tese de Doutoramento, 198 p.
- CABY, R. & ARTHAUD, M.H. 1986. Major Precambrian nappes of the Brazilian belt, Ceará, northeast Brazil. Geology, **14** : 871 874.
- CAMPOS, M.; BRAGA, A.P.G.; MELLO, A.A.; SOUZA, E.M.; SILVA, F.H.F.; FRANÇA, J.B.; ANDRADE, V.A. 1976. Projeto Rio Jaguaribe, Relatório Final, Brasília, 149 p.
- CAVALCANTE, J.C. & FERREIRA, C.A. 1983. Mapa geológico do Estado do Ceará. Escala 1:500.000, MME. CPRM / DNPM.
- CAWTHORN, R.G. & COLLERSON, K.D. 1974. The recalculation of pyroxene and member parameters and the estimation of ferrous and ferrie iron content from electron microprobe analysis. American Mineral., **59** : 1203 1208.
- DEER, W.A.; HOWIE, R.A.; ZUSSMAN, J. 1966. Rock forming minerals: orth-and ring silicates. (vol. 1) London, Longman Group Ltd.
- DEER, W.A.; HOWIE, R.A.; ZUSSMAN, J.1972. Rock forming minerals: orth-and ring silicates. (vol. 1) London, Longman Group Ltd.
- DRUMMOND, M.S.; DEFANT, M.J.; KEPEZHINSKAS, P.K. 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, **87**, 205-215.
- EVANS, K.V. & FISCHER, L.B. 1986. U Pb geochronology of two augen gneiss terrains, Idahonew data and tectonic implications. Can. J. Earth Sci., 23: 1919 -1927.
- FETTER, A. H. 1999. U/Pb and Sm/Nd Geochronological Constraints on the Crustal Framework and Geologic History of Ceará State, NW Borborema Province, NE Brazil: Implications for the Assembly of Gondwana. Departament of Geology, Kansas University, Lawrence, Tese de Doutoramento, 164 p.
- GAUDETTE, H.E.; LAFON, J.M.; MACAMBIRA, M. J.B.; MOURA, C.A.V.; SCHELLER, T. 1998. Comparasion of single filament Pb evaporation / ionization zircon ages with conventional U – Pb results: exemples from Precambrian of Brazil. Journal of South Amer. Earth Sci., 11: 351 – 363.
- GOMES, J.R.C.; CATTO, C.M.P.P.; SOUZA, G.M.C.; LUZ, D.S.; PIRES, J.L.; TEIXEIRA, W. 1981. Projeto Radambrasil, folhas SB- 24/25, Jaguaribe Natal, vol. 23. MME. Rio de Janeiro.

- GREEN, T.H. & WALLACE, M.E. 1988. Mantle metassomatism by ephemeral carbonatite melts. Nature 336. 459 462.
- GRIFFIN, W.L. & HEIER, K.S. 1973. Petrological Implications of some coronas structures. Lithos, 6: 315-335.
- HAMMARSTROM, J.M. & ZEN, E. A. 1986. Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist, **71**: 1297 1313.
- HARKER, A. 1909. The natural history of igneous rocks Methuen, London.
- HAWTHORNE, F. 1981. Cristal chemistry of the anphiboles. Mineralogical Society of American Reviews in Mineralogy, **9A** : 1- 102.
- HOLLISTER, L.S.; GRISSOM, G.C.; PETERS, E.K.; STOWELL, H.H.; SISSON, V.B. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, **72**: 231 – 239.
- IRVINE, T.N. & BARAGAR, W.R.A. 1971. A guide to the chemical classification of the commom volcanic rocks. Canadian Journal of Earth Science, **8**: 523 548.
- JAHN, D.M. 1990. Origin of granulits: Geochemical Constrainsts from Archean granulit facies rocks of the Sino-Korean Craton, Ph. (edf) Granulits and Crustal Evolution. NATO ASI series, Kluwer Academic Publishers, 471-492.
- JOHNSON, M.C. & RUTHERFORD, M.J. 1988. Experimental calibration of an aluminum – in – hornblede geobarometer applicable tot calcalkaline rocks. Eos 69: 1511.
- KEGEL, W. 1965. A estrutura geológica do Nordeste do Brasil. Bol. Div. Geol. Mineral., Rio de Janeiro, 227: 1 – 52.
- KOBER, B. 1987. Single grain evaporation cambined with Pb emitter bedding for ²⁰⁷Pb/²⁰⁶Pb investigations using thermal ion mass spectrometry and implications for zirconology. Contributions to Mineralogy and Petrology, **96**: 63 – 71.
- KOPPEN, W. 1948. Climatologia. Tradução de Pedro Perez, Mexico, Fundo de Cultura Econômica.
- LA ROCHE, H. de,; LETERRIER, J.; GRANDCLAUDE, P.; MARCHAL, M.1980. A classification of volcanic and plutonic rocks using R1 R2 diagram and major element analyses its relationship with current nomenclature. Chem. Geol. **29**:183 –210.

- LANCELOT, J.R.; BOULIER, A.M.; MALUSKI, H.; DUCROT, J. 1983. Deformation and related radiochronology in a Late Pan- African mylonitic shear zone, Adfar des Horas (Mali). Contribution to Mineralogy and Petrology., 82: 312 – 326.
- LACHENBRUCH, A.H. & MORGAN, P., 1990. Continental extension, magmatism and elevation; formal relations and rules of thumb. Tectonophysics, **174**, 39-62.
- LE MAITRE, R.W. 1989. A classification of igneous rocks and glossary of terms. Recomendations of the IUGS Subcommission of the Systematics of Igneous Rocks 1 ed. Oxford, Blackwell Science Publication, 193 p.
- MANIAR, P.D. & PICCOLI, P.M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635 – 643.
- MARTIN, H. 1999. Adakitic magmas: modern analogues of Archaean granitoids, in: SIAL, A.N.; STEPHENS, W.E and FERREIRA V.P.- Special Issue: granites and Associated Mineralisation. Lithos, Vol. 46 (3), 411-429.
- MARTINS, G.; OLIVEIRA, E.P.; SOUZA FILHO, C.R.; LAFON, J.M. 1998. Geochemistry and Geochronology of the Algodões Sequence, Ceará, NE Brazil: A Paleoproterozoic magmatic arc in the central Ceará domain of the Borborema Province? XL Cong. Bras. Geol.; Belo Horizonte-MG.
- MAURY, R.C.; SAJONA, F.G.; PUBELLIER, M.; BELLON, H.; DEFANT, M.J. 1996. Fusion de la croûte océanique dans les zones de subduction / collision récentes: l'exemple de Mindanao (Philippines). Bull. Soc. Geol. Fr. 167 (5), 579 595.
- MELO, Z.F. de. 1978. Evoluções Finais do Ciclo Geotectônico Brasiliano no Nordeste Oriental. In : Congresso Brasileiro de Geologia, 30⁰, Recife.
- MIDDLEMOST, E.A.K. 1994. Naming materials in the magma / igneous rock system. Earth – Science Reviews, Elsevier, **37** : 215-224, 1994.
- MIYASHIRO, A. Volcanic rock series in island-arcs active continental margins. Amer. J. Sci, **274**: 321-355, 1974.
- MONIÈ, P.; CABY, R.; ARTHAUD, M.H. 1997. Timing of the Neoproterozoic Brasiliano orogeny in northeast Brazil: ⁴⁰Ar/³⁹Ar ages and petrostructural data from Ceará. Precambrian Research, **81**: 241 264.
- MORIMOTO, N. 1988. Nomenclature of Pyroxenes. American Mineralogist, **73**: 1123 1133.
- NISBET, E.G. 1987. The Young Earth. Allen and Unwin, Boston.

- OTTEN, M.T. 1984. The origin of brown hornblende in the Artfjallet gabbro and dolerites. Contributions to Mineralogy and Petrology, **86**: 189 199.
- PAGE, R.W. & BELL, T.H. 1985. Isotopic and structural responses of granites to successive deformation and metamorfism. J. Geology., **94**: 365 379.
- PAQUETTE, J.L.; NÉDELÉC, A.; MOINE, B.;RAKOTONDRAZAFY, M. 1994. U Pb, single zircon Pb-evaporation, and Sm-Nd isotopic study of a Granulite domain in SE Madagascar. J. Geology., **102**: 523 – 538.
- PEARCE, J.A. & GALE, G.H.1977. Identification of ore deposition environment from trace element geochemistry. Spec. Publ. Geol. Soc. Lond. 7: 14 24.
- PEARCE, J.A.; HARRIS, N.B.W.; TINDLE, A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956 – 983.
- RICHARD, L.R. 1995. Minpet for Windows Version 2.02. Minpet Geological Software. Québec.
- ROBINSON, P.; SPEAR, F.S.; SCHUMACHER, J.C.; LAIRD, J.; KLEIN, C.; EVANS, B.W.; DOOLAN, B.L. 1981. Phase relations of metamorphic amphiboles: Natural occurence and theory. Mineralogical Society of America. Reviews un Mineralogy, 9B: 1 – 228.
- ROLLINSON, H. 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Group. London. 352p.
- SANTOS, E. J. & BRITO NEVES, B. B. de. 1984. Província Borborema In ALMEIDA, F. F. M. e HASUI, Y. (1984) O Pre-Cambriano do Brasil. Ed. E. Blucher Ltda, pp. 123 186.
- SHAND, S.J. 1945. Eruptive rocks. Thomas Murby, London, 488 p.
- SHAW, D.M .1968. A review of Rb Sr fractionation trends to covariance analysis. Geochim. Cosmochim. Acta, 32 : 573 – 602.
- SOUZA, E. M.& BRAGA, A.P. 1984. Mapeamento Geológico da folha Itapiúna, escala regional. Relatório, CEMINAS, Fortaleza, 250 p.
- SOUZA, M.J.N. 1988. Contribuição ao estudo das unidades morfo-estruturais do Estado do Ceará. Revista de Geologia, Imprensa da UFC, v.1 (1), Fortaleza, 73 91.
- STACEY, J.S. & KRAMERS, J.D. 1975. Aproximation of terrestrial lead isotope evolution by a two stage model. Earth Planet. Sci. Lett., **26**: 207 221.

- STRECKEISEN, A. 1976. To each plutonic rock its proper name. Earth. Sci. Rev., 12: 1-33.
- TARNEY, J. Geochemistry of Archean high-grade gneisses, with implications as to the origin and evolution of the Precambrian Crust. In: WIDLEY, B.F. (Ed) The early history of the earth. London: John Wiley, c 1977. p. 405-417. Il.
- TAYLOR, S.R. & McLENNAN, S.M. 1985. The Continental Crust: its composition and evolution. Oxford, Blackwell, 312 p.
- THOMPSON, R.N. & FOWLER, M.B. 1986. Subduction-related shoshonitic and ultrapotassic magmatism: a study of Silirian-Ordovician syenites from the Scottish Caledonites. Contrib. Mineral. Petrol., **94**: 507-522.
- WILSON, M. 1989. Igneous petrogenesis. Unwin Hyman, London.
- WITT-EICKSCHEN, G. & SECK, H.A.1991.Solubility of Ca and Al in orthopyroxene from spinel peridotite : na improved version of na empirical geothermometer:Contrib.Mineral. Petrol., v. 106. no.4, p.431-439.

Bessa, M.D.M.R. - Complexo Pedra Aguda : Caracterização ...

ANEXOS

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIENCIAS DEPARTAMENTO DE GEOLOGIA CURSO DE PÓS - GRADUAÇÃO - MESTRADO EM GEOLOGIA

