Please use this identifier to cite or link to this item: https://rigeo.cprm.gov.br/handle/doc/19640
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGUIMARÃES, Guilherme Mendoza-
dc.contributor.authorFAN, Fernando Mainardi-
dc.contributor.authorMARCUZZO, Francisco Fernando Noronha-
dc.contributor.authorBUFFON, Franco Turco-
dc.contributor.authorGERMANO, Andrea de Oliveira-
dc.date.accessioned2018-07-26T10:02:46Z-
dc.date.available2018-07-26T10:02:46Z-
dc.date.issued2018-07-
dc.identifier.citationGUIMARÃES, Guilherme Mendoza et al. Com qual antecedência conseguimos prever cheias no rio Uruguai usando um modelo hidrológico de grande escala? In: ENCONTRO NACIONAL DE DESASTRES, 1., 2018, Porto Alegre. [Trabalhos aprovados...] Porto Alegre: ABRH, 2018.pt_BR
dc.identifier.urihttps://rigeo.cprm.gov.br/handle/doc/19640-
dc.description.abstractThe short and medium-range flow forecasting techniques using large-scale hydrological models have several direct applications in the management of natural disasters through warning systems. The present study is a research study on this type of system, applied in the Uruguay River Basin (RS, SC, Argentina and Uruguay). The objective of this study was to investigate the predictability of critical events at points of interest in the Uruguay river basin. We aimed to evaluate how early it is possible to estimate the peak flow in some sites susceptible to flooding in the basin. For the present research we selected municipalities that will be initially served by the Geological Service of Brazil (CPRM) warning system in the Uruguay river: Garruchos, Itaqui, Porto Lucena, São Borja and Uruguaiana. In the evaluation, the Nash-Sutcliffe Efficiency coefficient (NSE) was used. After the calibration and validation of the model, the predictability analysis was performed based on 15 flood events that occurred between 1980 and 2017 in which the forecasts of daily time-step were compared to a reference simulation. It was verified that there is an increase in the predictability from one day for up to three days, increasing as further downstream the place of interest is located. Also it was evidenced that the predictability especially in Uruguaiana city is dependent on where the floods are originated (higher Uruguay basin or Ibicuí basin). These results constitute useful information that may assist managers in decision making during critical events where forecast are provided by the proposed type of modelingpt_BR
dc.description.abstractO estudo abrange as seguintes bacias e sub-bacias hidrográficas (entre outras): Bacia 7, Bacia hidrográfica do Rio Uruguai, Bacia Hidrográfica do Rio Quaraí, Bacia Hidrográfica do rio Ibicuí, Bacia Hidrográfica do Rio Pelotas, Bacia Hidrográfica do Rio do Peixe, Sub-Bacia 70, Sub-Bacia 71, Sub-Bacia 72, Sub-Bacia 73, Sub-Bacia 74, Sub-Bacia 75, Sub-Bacia 76, Sub-Bacia 77, Sub-Bacia 78 e Sub-Bacia 79. O estudo abrange os seguintes municípios (entre outros): Barracão, Urubici, Campos Novos, Caçador, Marcelino Ramos, Água Doce, Uruguaiana, Bagé, Quaraí, Rio dos Índios, Campo Erê, Doutor Maurício, Cardoso, Chapada, Itaqui, Tupanciretâ, Santana do Livramento, Hulha Negra, Aceguá, Alpestre, Itá, Piratuba, Maximiliano de Almeida, Anita Garibaldi e Pinhal da Serra. O estudo abrange as seguintes UHEs: Usina Hidrelétrica de Campos Novos, Usina Hidrelétrica de Barra Grande, Usina Hidrelétrica de Machadinho, Usina Hidrelétrica de Itá, Usina Hidrelétrica Foz do Chapecó e Águas de Chapecó. O estudo abrange os seguintes rios (entre outros): Rio Uruguai, Rio Canoas, Rio Pelotas, Rio do Peixe, Rio Chapecó, Rio Peperi-Guaçu, Rio camaquã, Rio Forquilha, Rio Apuaê, Rio Passo Fundo, Rio da Várzea, Rio Ijuí, Rio Ibicuí, Rio Quaraí e Rio Negro. O estudo abrange os seguintes estados e países: Rio Grande do Sul, Santa Catarina, Uruguai e Argentina.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherABRHpt_BR
dc.rightsopenpt_BR
dc.subjectHIDROLOGIApt_BR
dc.subjectMODELOS HIDROLÓGICOSpt_BR
dc.subjectSISTEMA DE ALERTApt_BR
dc.subjectPREVISÃO HIDROLÓGICApt_BR
dc.subjectPREVISIBILIDADEpt_BR
dc.subjectRIO GRANDE DO SULpt_BR
dc.subjectRIO URUGUAIpt_BR
dc.subjectSISTEMA DE ALERTA DE EVENTOS CRÍTICOSpt_BR
dc.subjectSACEpt_BR
dc.subjectCHEIASpt_BR
dc.subjectINUNDAÇÕESpt_BR
dc.subjectMODELOS DE GRANDES BACIASpt_BR
dc.subjectMGBpt_BR
dc.subjectMODELO DIGITAL DE ELEVAÇÃOpt_BR
dc.titleCom qual antecedência conseguimos prever cheias no rio Uruguai usando um modelo hidrológico de grande escala?pt_BR
dc.typeWorking Paperen
dc.localPorto Alegrept_BR
dc.creator.affilliationCPRMpt_BR
dc.creator.affilliationUFRGS/IPHpt_BR
dc.subject.enHIDROLOGYpt_BR
dc.subject.enHYDROLOGICAL MODELSpt_BR
dc.subject.enALERT SYSTMSpt_BR
dc.subject.enHYDROLOGICAL FORECASTpt_BR
dc.subject.enURUGUAY RIVERpt_BR
dc.subject.enOTTOCODIFICATIONen
dc.subject.enRIVER CODIFICATIONen
dc.subject.enMORPHOLOGYen
dc.subject.enRELIEFen
dc.subject.enHIPSOMETRICen
dc.subject.enDIGITAL MODEL ELEVATIONen
dc.subject.enBRASILpt_BR
dc.subject.enARGENTINApt_BR
dc.subject.enURUGUAIpt_BR
dc.subject.esPREVISIÓN HIDROLÓGICAes
dc.subject.esHIDROLOGÍAes
Appears in Collections:Trabalhos Apresentados em Eventos

Files in This Item:
File Description SizeFormat 
previsao_uruguai.pdfproducao cientifica1,15 MBAdobe PDFThumbnail
View/Open
apresentacao_END.pdf2,73 MBAdobe PDFThumbnail
View/Open
localizacao_bacia_rio_uruguai.pdfmapa2,88 MBAdobe PDFView/Open
nash_analise_previsibilidade_inundacao.pngfigura161,58 kBimage/pngView/Open
postos_fluviometricos.pdfmapa2,97 MBAdobe PDFView/Open
simulacao_dados_precipitacao.pngfigura294,92 kBimage/pngView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.